Singularity of sparse Bernoulli matrices with$ p$ is close to $\log(n)/n$.

Series
High Dimensional Seminar
Time
Wednesday, September 9, 2020 - 3:00pm for 1 hour (actually 50 minutes)
Location
Join Zoom Meeting https://us02web.zoom.us/j/88203571169 Meeting ID: 882 0357 1169
Speaker
Han Huang – Georgia Tech – hhuang421@gatech.edu
Organizer
Han Huang

It has been conjectured that for a sufficiently large $n$, and $p = p_n \in [\log(n)/n, 1/2)$, the probability that a $n\times n$ Bernoulli($p$) matrix $A$ is singular equals to the probability that $A$ contains of a zero row or zero column up to a negligible error.

This conjecture has been recently proved by Litvak-Tikhomirov in the regime $ C\log(n)/ n < p < 1/C$ for some universal constant $C>1$ with their new tool. While for $p = (1+o(1)) \log(n) /n$, it also holds due to a result of Basak-Rudelson. In this talk, we will discuss how to extend their results to fill the gap between these two regions. ( $1\le pn/\log(n) <\infty$ )