- Series
- High Dimensional Seminar
- Time
- Wednesday, March 4, 2020 - 3:00pm for 1 hour (actually 50 minutes)
- Location
- Speaker
- Vladimir Oliker – Emory University
- Organizer
- Galyna Livshyts
In his book Convex Polyhedra, ch. 7 (end of subsection 2) A.D. Aleksandrov raised a general question of finding variational statements and proofs of existence of convex polytopes with given geometric data. As an example of a geometric problem in which variational approach was successfully applied, Aleksandrov quotes the Minkowski problem. He also mentions the Weyl problem of isometric embedding for which a variational approach was proposed (but not fully developed and not completed) by W. Blashke and G. Herglotz. The first goal of this talk is to give a variational formulation and solution to the problem of existence and uniqueness of a closed convex hypersurface in Euclidean space with prescribed integral Gaussian curvature (also posed by Aleksandrov who solved it using topological methods). The second goal of this talk is to show that in variational form the Aleksandrov problem is closely connected to the theory of optimal mass transport on a sphere with cost function and constraints arising naturally from geometric considerations.