- Series
- Job Candidate Talk
- Time
- Tuesday, December 10, 2013 - 11:05am for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Leander Geisinger – Princeton University
- Organizer
- Michael Loss

The Anderson model on a discrete graph is given by the graph Laplacian perturbed by a random potential. I study spectral properties of this random Schroedinger operator on a random regular graph of fixed degree in the limit where the number of vertices tends to infinity.The choice of model is motivated by its relation to two important and well-studied models of random operators: On the one hand there are similarities to random matrices, for instance to Wigner matrices, whose spectra are known to obey universal laws. On the other hand a random Schroedinger operator on a random regular graph is expected to approximate the Anderson model on the homogeneous tree, a model where both localization (characterized by pure point spectrum) and delocalization (characterized by absolutely continuous spectrum) was established.I will show that the Anderson model on a random regular graph also exhibits distinct spectral regimes of localization and of delocalization. One regime is characterized by exponential decay of eigenvectors. In this regime I analyze the local eigenvalue statistics and prove that the point process generated by the eigenvalues of the random operator converges in distribution to a Poisson process.In contrast to that I will also show that the model exhibits a spectral regime of delocalization where eigenvectors are not exponentially localized.