Periodic and quasi-periodic attractors of the spin-orbit dynamics of Mercury

Math Physics Seminar
Tuesday, April 9, 2019 - 12:00pm for 1 hour (actually 50 minutes)
Skiles 005
Guido Gentile – Universita' di Roma 3 –
Federico Bonetto

Please Note: Unusual time.

Mercury is entrapped in a 3:2 resonance: it rotates on its axis three times for every two revolutions it makes around the Sun. It is generally accepted that this is due to the large value of Mercury's eccentricity. However, the mathematical model commonly used to study the problem -- sometimes called the spin-orbit model -- proved not to be entirely convincing, because of the expression used for the tidal torque. Only recently, a different model for the tidal torque has been proposed, with the advantage of both being more realistic and providing a higher probability of capture into the 3:2 resonance with respect to the previous models. On the other hand, a drawback of the model is that the function describing the tidal torque is not smooth and appears as a superposition of peaks, so that both analytical and numerical computations turn out to be rather delicate. We shall present numerical and analytical results about the nature of the librations of Mercury's spin in the 3:2 resonance, as predicted by the realistic model. In particular we shall provide evidence that the librations are quasi-periodic in time, so that the very concept of resonance should be revisited. The analytical results are mainly based on perturbation theory and leave several open problems, that we shall discuss.