Conformal mappings and integrability of surface dynamics

Math Physics Seminar
Thursday, November 2, 2023 - 4:00pm for 1 hour (actually 50 minutes)
Skiles 005 and online at
Pavel Lushnikov – Department of Mathematics and Statistics, University of New Mexico – plushnik@math.unm.edu
Federico Bonetto

A fully nonlinear surface dynamics of the time dependent potential flow of ideal incompressible fluid with a free surface is considered in two dimensional geometry. Arbitrary large surface waves can be efficiently characterized through a time-dependent conformal mapping of a fluid domain into the lower complex half-plane. We reformulate the exact Eulerian dynamics through a non-canonical nonlocal Hamiltonian system for the pair of new conformal variables. We also consider a generalized hydrodynamics for two components of superfluid Helium which has the same non-canonical Hamiltonian structure. In both cases the fluid dynamics is fully characterized by the complex singularities in the upper complex half-plane of the conformal map and the complex velocity. Analytical continuation through the branch cuts generically results in the Riemann surface with infinite number of sheets including Stokes wave, An infinite family of solutions with moving poles are found on the Riemann surface. Residues of poles are the constants of motion. These constants commute with each other in the sense of underlying non-canonical Hamiltonian dynamics which provides an argument in support of the conjecture of complete Hamiltonian integrability of surface dynamics. If we consider initial conditions with short branch cuts then fluid dynamics is reduced to the complex Hopf equation for the complex velocity coupled with the complex transport equation for the conformal mapping. These equations are fully integrable by characteristics producing the infinite family of solutions, including the pairs of moving square root branch points. The solutions are compared with the simulations of the full Eulerian dynamics giving excellent agreement.