The neutral community model with random fission speciation

Mathematical Biology Seminar
Wednesday, October 14, 2009 - 11:00am for 1 hour (actually 50 minutes)
Skiles 269
Bart Haegeman – INRIA, Montpellier, France
Leonid Bunimovich
Hubbell's neutral model provides a rich theoretical framework to study ecological communities. By coupling ecological and evolutionary time scales, it allows investigating how communities are shaped by speciation processes. The speciation model in the basic neutral model is particularly simple, describing speciation as a point mutation event in a birth of a single individual. The stationary species abundance distribution of the basic model, which can be solved exactly, fits empirical data of distributions of species abundances surprisingly well. More realistic speciation models have been proposed such as the random fission model in which new species appear by splitting up existing species. However, no analytical solution is available for these models, impeding quantitative comparison with data. Here we present a self-consistent approximation method for the neutral community model with random fission speciation. We derive explicit formulas for the stationary species abundance distribution, which agree very well with simulations. However, fitting the model to tropical tree data sets, we find that it performs worse than the original neutral model with point mutation speciation.