- Series
- Mathematical Biology Seminar
- Time
- Wednesday, October 21, 2009 - 11:00am for 1 hour (actually 50 minutes)
- Location
- Skiles 269
- Speaker
- Klas Udekwu – Biology, Emory University – ikeche@gmail.com
- Organizer
- Howie Weiss
Treatment of bacterial
infections with antibiotics is universally accepted as one of (if not THE) most
significant contributions of medical intervention to reducing mortality and
morbidity during last century. Surprisingly, basic knowledge about how
antibiotics kill or prevent the growth of bacteria is only just beginning to
emerge and the dose and term of antibiotic treatment has long been determined
by clinicians empirically and intuitively.
There is a recent drive to
theoretically and experimentally rationalize antibiotic treatment protocols with
the aim to them and to design protocols which maximize antibiotics’ efficacy
while preventing resistance emergence. Central to these endeavors are the
pharmacodynamics of the antibiotic(s) and bacteria, PD (the relationship
between the concentration of the antibiotic and the rate of growth/death of
bacteria), and the pharmacokinetics of the antibiotic, PK (the distribution and
change in concentration of the antibiotics in a treated host) of each
bacteria. The procedures for
estimating of PD and PK parameters are well established and standardized
worldwide. Although different PK
parameters are commonly employed for the design of antibiotic treatment
protocols most of these considerations, a single PD parameter is usually used,
the minimum inhibitory concentration (MIC). The Clinical and Laboratory
Standards Institute (CLSI)
approved method for estimating MICs defines testing conditions that are optimal
for the antibiotic, like low densities and exponential growth, rarely obtain
outside of the laboratory and virtually never in the bacteria infecting
mammalian hosts. Real
infections with clinical symptoms commonly involve very high densities of
bacteria, most of which are not replicating, and these bacteria are rarely
planktonic, rather residing as colonies or within matrices called biofilms
which sometimes include other species of bacteria. Refractoriness (non-inherited resistance) is the term used to
describe an observed inefficacy of antibiotics on otherwise
antibiotic-susceptible bacterial populations. This talk will focus on our
efforts to describe the pharmacodynamic relationship between Staphylococcus
aureus and antibiotics of six
classes in the light of antibiotic refractoriness.
I will begin by addressing
the effects of cell density on the MIC index, after which I intend to present
unpublished data descriptive of physiology-related effects on antibiotic
efficacy. Additionally, we will explore
the potential contribution of such in vitro results, to observed/predicted clinical
outcomes using standard mathematical models of antibiotic treatment which also
serve to generate testable hypotheses.