Modeling Phytoplankton Blooms with a Reaction-Diffusion Predator-Prey Model

Mathematical Biology Seminar
Wednesday, March 4, 2020 - 11:00am for 1 hour (actually 50 minutes)
Skiles 006
Seth Cowall – Mercer University
Daniel Cruz

Phytoplankton are the base of the marine food web. They are also responsible for much of the oxygen we breathe, and they remove carbon dioxide from the atmosphere. The mechanisms that govern the timing of seasonal phytoplankton blooms is one of the most debated topics in oceanography. Here, we present a macroscale plankton ecology model consisting of coupled, nonlinear reaction-diffusion equations with spatially and temporally changing coefficients to offer insight into the causes of phytoplankton blooms. This model simulates biological interactions between nutrients, phytoplankton and zooplankton. It also incorporates seasonally varying solar radiation, diffusion and depth of the ocean’s upper mixed layer because of their impact on phytoplankton growth. The model is analyzed using seasonal oceanic data with the goals of understanding the model’s dependence on its parameters and of understanding seasonal changes in plankton biomass. A study of varying parameter values and the resulting effects on the solutions, the stability of the steady-states, and the timing of phytoplankton blooms is carried out. The model’s simulated blooms result from a temporary attraction to one of the model’s steady-states.