- Series
- PDE Seminar
- Time
- Tuesday, October 22, 2019 - 3:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Philippe G. LeFloch – Sorbonne University and CNRS – contact@philippelefloch.org
- Organizer
- Xukai Yan
I will present a new method of analysis for Einstein’s
constraint equations, referred to as the Seed-to-Solution Method, which
leads to the existence of asymptotically Euclidean manifolds with
prescribed asymptotic behavior. This method generates a (Riemannian)
Einstein manifold from any seed data set consisting of (1): a Riemannian
metric and a symmetric two-tensor prescribed on a topological manifold
with finitely many asymptotically Euclidean ends, and (2): a density
field and a momentum vector field representing the matter content. By
distinguishing between several classes of seed data referred to as tame
or strongly tame, the method encompasses metrics with the weakest
possible decay (infinite ADM mass) or the strongest possible decay
(Schwarzschild behavior). This analysis is based on a linearization of
the Einstein equations (involving several curvature operators from
Riemannian geometry) around a tame seed data set. It is motivated by
Carlotto and Schoen’s pioneering work on the so-called localization
problem for the Einstein equations. Dealing with manifolds with possibly
very low decay and establishing estimates beyond the critical level of
decay requires significantly new ideas to be presented in this talk. As
an application of our method, we introduce and solve a new problem,
referred to as the asymptotic localization problem, at the critical
level of decay. Collaboration with T. Nguyen. Blog: philippelefloch.org