Maxmimal regularity properties of local and nonlocal problems for regular and singular degenerate PDEs

PDE Seminar
Tuesday, August 21, 2018 - 3:00pm for 1 hour (actually 50 minutes)
Skiles 006
Professor Veli Shakhmurov – Okan University –
Ronghua Pan
The boundary value and mixed value problems for linear and nonlinear degenerate abstract elliptic and parabolic equations are studied. Linear problems involve some parameters. The uniform L_{p}-separability properties of linear problems and the optimal regularity results for nonlinear problems are obtained. The equations include linear operators defined in Banach spaces, in which by choosing the spaces and operators we can obtain numerous classes of problems for singular degenerate differential equations which occur in a wide variety of physical systems. In this talk, the classes of boundary value problems (BVPs) and mixed value problems (MVPs) for regular and singular degenerate differential operator equations (DOEs) are considered. The main objective of the present talk is to discuss the maximal regularity properties of the BVP for the degenerate abstract elliptic and parabolic equation We prove that for f∈L_{p} the elliptic problem has a unique solution u∈ W_{p,α}² satisfying the uniform coercive estimate ∑_{k=1}ⁿ∑_{i=0}²|λ|^{1-(i/2)}‖((∂^{[i]}u)/(∂x_{k}^{i}))‖_{L_{p}(G;E)}+‖Au‖_{L_{p}(G;E)}≤C‖f‖_{L_{p}(G;E)} where L_{p}=L_{p}(G;E) denote E-valued Lebesque spaces for p∈(1,∞) and W_{p,α}² is an E-valued Sobolev-Lions type weighted space that to be defined later. We also prove that the differential operator generated by this elliptic problem is R-positive and also is a generator of an analytic semigroup in L_{p}. Then we show the L_{p}-well-posedness with p=(p, p₁) and uniform Strichartz type estimate for solution of MVP for the corresponding degenerate parabolic problem. This fact is used to obtain the existence and uniqueness of maximal regular solution of the MVP for the nonlinear parabolic equation.