- Series
- Research Horizons Seminar
- Time
- Wednesday, October 3, 2018 - 12:20pm for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Justin Lanier – Georgia Tech
- Organizer
- Trevor Gunn
After briefly describing my research interests, I’ll speak on two results that involve points moving around on surfaces. The first result shows how to “hear the shape of a billiard table.” A point bouncing around a polygon encodes a sequence of edges. We show how to recover geometric information about the table from the collection of all such bounce sequences. This is joint work with Calderon, Coles, Davis, and Oliveira. The second result answers the question, “Given n distinct points in a closed ball, when can a new point be added in a continuous fashion?” We answer this question for all values of n and for all dimensions. Our results generalize the Brouwer fixed point theorem, which gives a negative answer when n=1. This is joint work with Chen and Gadish.