Stability and long time dynamics of Hamiltonian PDEs

Series
Research Horizons Seminar
Time
Wednesday, April 22, 2015 - 12:05pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zhiwu Lin – Georgia Tech
Organizer
Benjamin Ide
Many physical models without dissipation can be written in a Hamiltonian form. For example, nonlinear Schrodinger equation for superfluids and Bose-Einstein condensate, water waves and their model equations (KDV, BBM, KP, Boussinesq systems...), Euler equations for inviscid fluids, ideal MHD for plasmas in fusion devices, Vlasov models for collisionless plasmas and galaxies, Yang-Mills equation in gauge field theory etc. There exist coherent structures (solitons, steady states, traveling waves, standing waves etc) which play an important role on the long time dynamics of these models. First, I will describe a general framework to study linear stability (instability) when the energy functional is bounded from below. For the models with indefinite energy functional (such as full water waves), approaches to find instability criteria will be mentioned. The implication of linear instability (stability) for nonlinear dynamics will be also briefly discussed.