Closed geodesics on compact simply connected Finsler manifolds

Series
School of Mathematics Colloquium
Time
Tuesday, March 8, 2016 - 11:00am for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Yiming Long – Nankai University
Organizer
Molei Tao
The closed geodesic problem is a classical topic of dynamical systems, differential geometry and variational analysis, which can be chased back at least to Poincar\'e. A famous conjecture claims the existence of infinitely many distinct closed geodesics on every compact Riemaniann manifold. But so far this is only proved for the 2-dimentional case. On the other hand, Riemannian metrics are quadratic reversible Finsler metrics, and the existence of at least one closed geodesic on every compact Finsler manifold is well-known because of the famous work of Lyusternik and Fet in 1951. In 1973 A. Katok constructed a family of remarkable Finsler metrics on every sphere $S^d$ which possesses precisely $2[(d+1)/2]$ distinct closed geodesics. In 2004, V. Bangert and the author proved the existence of at least $2$ distinct closed geodesics for every Finsler metric on $S^2$, and this multiplicity estimate on $S^2$ is sharp by Katok's example. Since this work, many new results on the multiplicity and stability of closed geodesics have been established. In this lecture, I shall give a survey on the study of closed geodesics on compact Finsler manifolds, including a brief history and results obtained in the last 10 years. Then I shall try to explain the most recent results we obtained for the multiplicity and stability of closed geodesics on compact simply connected Finsler manifolds, sketch the ideas of their proofs, and then propose some further open problems in this field.