- Series
- School of Mathematics Colloquium
- Time
- Tuesday, March 8, 2016 - 11:00am for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Prof. Dr. Yiming Long – Nankai University
- Organizer
- Molei Tao
The closed geodesic problem is a classical topic of dynamical systems,
differential geometry and variational analysis, which can be chased back
at least to Poincar\'e. A famous conjecture claims the existence of
infinitely many distinct closed geodesics on every compact Riemaniann
manifold. But so far this is only proved for the 2-dimentional case. On
the other hand, Riemannian metrics are quadratic reversible Finsler
metrics, and the existence of at least one closed geodesic on every
compact Finsler manifold is well-known because of the famous work of
Lyusternik and Fet in 1951. In 1973 A. Katok constructed a family of
remarkable Finsler metrics on every sphere $S^d$ which possesses
precisely $2[(d+1)/2]$ distinct closed geodesics. In 2004, V. Bangert
and the author proved the existence of at least $2$ distinct closed
geodesics for every Finsler metric on $S^2$, and this multiplicity estimate on $S^2$
is sharp by Katok's example. Since this work, many new results on the
multiplicity and stability of closed geodesics have been established. In
this lecture, I shall give a survey on the study of closed geodesics on
compact Finsler manifolds, including a brief history and results
obtained in the last 10 years. Then I shall try to explain the most
recent results we obtained for the multiplicity and stability of closed
geodesics on compact simply connected Finsler manifolds, sketch the
ideas of their proofs, and then propose some further open problems in
this field.