- Series
- Stochastics Seminar
- Time
- Thursday, September 21, 2023 - 3:30pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Daesung Kim – Georgia Tech
- Organizer
- Cheng Mao

We consider the Ising Curie-Weiss model on the complete graph constrained under a given $\ell_{p}$ norm. For $p=\infty$, it reduces to the classical Ising Curie-Weiss model. We prove that for all $p\ge 2$, there exists a critical inverse temperature $\beta_{c}(p)$ such that for $\beta<\beta_{c}(p)$, the magnetization is concentrated at zero and satisfies an appropriate Gaussian CLT. On the other hand, for $\beta>\beta_{c}(p)$, the magnetization is not concentrated at zero similar to the classical case. We further generalize the model for general symmetric spin distributions and prove similar phase transition. In this talk, we discuss a brief overview of classical Curie-Weiss model, a generalized Hubbard-Stratonovich transforms, and how we apply the transform to Curie-Weiss model under $\ell^p$ constraint. This is based on joint work with Partha Dey.