- Series
- Stochastics Seminar
- Time
- Thursday, November 6, 2025 - 3:30pm for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Erik Bates – North Carolina State University – ebates@ncsu.edu – https://www.ewbates.com/
- Organizer
- Michael Damron
First-passage percolation on the square lattice is a random growth model in which each edge of Z^2 is assigned an i.i.d. nonnegative weight. The passage time between two points is the smallest total weight of a nearest-neighbor path connecting them, and a path achieving this minimum is called a geodesic. Typically, the number of edges in a geodesic is comparable to the Euclidean distance between its endpoints. However, when the edge-weights take the value 0 with probability exactly 1/2, a strikingly different behavior occurs: geodesics travel primarily on critical clusters of zero-weight edges, whose internal graph distance scales superlinearly with Euclidean distance. Determining the precise degree of this superlinear scaling is a challenging and ongoing endeavor. I will discuss recent progress on this front (joint with David Harper, Xiao Shen, and Evan Sorensen), along with complementary results on a dual problem, where we restrict path lengths and analyze passage times (joint with Jack Hanson and Daniel Slonim).