- Series
- Stochastics Seminar
- Time
- Thursday, April 1, 2010 - 3:00pm for 1 hour (actually 50 minutes)
- Location
- Skiles 269
- Speaker
- Hira Koul – Michigan State University
- Organizer
- Liang Peng
In this talk we shall discuss the problem of fitting a distribution function to the
marginal distribution of a long memory process. It is observed that unlike in the i.i.d.
set up, classical tests based on empirical process are relatively easy to implement.
More importantly, we discuss fitting the marginal distribution of the error process in
location, scale and linear regression models.
An interesting observation is that the first order difference between the residual
empirical process and the null model can not be used to asymptotically to distinguish
between the two marginal distributions that differ only in their means. This finding is
in sharp contrast to a recent claim of Chan and Ling to appear in the Ann. Statist.
that such a process has a Gaussian weak limit. We shall also proposes some tests based
on the second order difference in this case and analyze some of their properties.
Another interesting finding is that residual empirical process tests in the scale
problem are robust against not knowing the scale parameter.
The third finding is that in linear regression models with a non-zero intercept
parameter the first order difference between the empirical d.f. of residuals and the null
d.f. can not be used to fit an error d.f.
This talk is based on ongoing joint work with Donatas Surgailis.