- Series
- Stochastics Seminar
- Time
- Sunday, April 28, 2019 - 3:05pm for 1 hour (actually 50 minutes)
- Location
- 006
- Speaker
- Liza Rebrova – UCLA
- Organizer
- Galyna Livshyts
I will talk about the structure of large square random matrices with centered i.i.d. heavy-tailed entries (only two finite moments are assumed). In our previous work with R. Vershynin we have shown that the operator norm of such matrix A can be reduced to the optimal sqrt(n)-order with high probability by zeroing out a small submatrix of A, but did not describe the structure of this "bad" submatrix, nor provide a constructive way to find it. Now we can give a very simple description of this small "bad" subset: it is enough to zero out a small fraction of the rows and columns of A with largest L2 norms to bring its operator norm to the almost optimal sqrt(loglog(n)*n)-order, under additional assumption that the entries of A are symmetrically distributed. As a corollary, one can also obtain a constructive procedure to find a small submatrix of A that one can zero out to achieve the same regularization.
I am planning to discuss some details of the proof, the main component of which is the development of techniques that extend constructive regularization approaches known for the Bernoulli matrices (from the works of Feige and Ofek, and Le, Levina and Vershynin) to the considerably broader class of heavy-tailed random matrices.