- Series
- Stochastics Seminar
- Time
- Thursday, March 14, 2013 - 3:05pm for 1 hour (actually 50 minutes)
- Location
- Skyles 006
- Speaker
- Yaniv Plan – University of Michigan
- Organizer
- Karim Lounici
1-bit compressed sensing combines the dimension reduction
of compressed sensing with extreme quantization -- only the sign of
each linear measurement is retained. We discuss recent
convex-programming approaches with strong theoretical guarantees. We
also discuss connections to related statistical models such as sparse
logistic regression.
Behind these problems lies a geometric question about random
hyperplane tessellations. Picture a subset K of the unit sphere, as
in the continents on the planet earth. Now slice the sphere in half
with a hyperplane, and then slice it several times more, thus cutting
the set K into a number of sections. How many random hyperplanes are
needed to ensure that all sections have small diameter? How is the
geodesic distance between two points in K related to the number of
hyperplanes separating them? We show that a single geometric
parameter, the mean width of K, governs the answers to these
questions.