Two-fold branched covers of hyperelliptic Lefschetz fibrations

Series
Geometry Topology Student Seminar
Time
Wednesday, February 21, 2024 - 2:00pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sierra Knavel – Georgia Tech
Organizer
Thomas Rodewald

When studying symplectic 4-manifolds, it is useful to consider Lefschetz fibrations over the 2-sphere due to their one-to-one correspondence uncovered by Freedman and Gompf. Lefschetz fibrations of genera 0 and 1 are well understood, but for genera greater than or equal to 2, much less is known. However, some Lefschetz fibrations with monodromies that respect the hyperelliptic involution of a genus-g surface have stronger properties which make their invariants easier to compute. In this talk, we will explore Terry Fuller's results from the late 90's which explore two-fold branched covers of hyperelliptic genus-g Lefschetz fibrations. We will look at his proof of why a Lefschetz fibration with only nonseparating vanishing cycles is a two-fold cover of $S^2 \times S^2$ branched over an embedded surface. The talk will include definitions, constructions, and Kirby pictures of branched covers in 4 dimensions. If time, we will discuss his results on hyperelliptic genus-g Lefschetz fibration which contain at least one separating vanishing cycles.