Introduction to the numerical solution of the classic problems of linear algebra including linear systems, least squares, SVD, eigenvalue problems. Crosslisted with CSE 6643.
Introduction to the implementation and analysis of numerical algorithms for the numerical solution of the classic partial differential equations of science and engineering.
Applied mathematics techniques to solve real-world problems. Topics include mathematical modeling, asymptotic analysis, differential equations and scientific computation. Prepares the student for MATH 6515. (1st of two courses)
This sequence develops the qualitative theory for systems of ordinary differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, normal forms. (1st of two courses)
Basic unifying theory underlying techniques of regression, analysis of variance and covariance, from a geometric point of view. Modern computational capabilities are exploited fully. Students apply the theory to real data through canned and coded programs.
Basic theories of testing statistical hypotheses, including a thorough treatment of testing in exponential class families. A careful mathematical treatment of the primary techniques of hypothesis testing utilized by statisticians.