sp17

Spring 2017

Archived: 

Complex Analysis

Complex integration, including Goursat's theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard's theorem.

Ordinary Differential Equations II

This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. (2nd of two courses)

Multivariate Statistical Analysis

Multivariate normal distribution theory, correlation and dependence analysis, regression and prediction, dimension-reduction methods, sampling distributions and related inference problems, selected applications in classification theory, multivariate process control, and pattern recognition.

Statistical Estimation

Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.

Probability II

Develops the probability basis requisite in modern statistical theories and stochastic processes. (2nd of two courses)

Algebra II

Graduate level linear and abstract algebra including rings, fields, modules, some algebraic number theory and Galois theory. (2nd of two courses)

Stochastic Processes II

Continuous time Markov chains. Uniformization, transient and limiting behavior. Brownian motion and martingales. Optional sampling and convergence. Modeling of inventories, finance, flows in manufacturing and computer networks. (Also listed as ISyE 6762)

Math Methods of Applied Sciences II

Review of vector calculus and and its application to partial differential equations.

Numerical Methods for Dynamical Systems

Approximation of the dynamical structure of a differential equation and preservation of dynamical structure under discretization.

Numerical Approximation Theory

Theoretical and computational aspects of polynomial, rational, trigonometric, spline and wavelet approximation.

Pages

Subscribe to RSS - sp17