Archived:

## Foundations of Mathematical Proof

An introduction to proofs in advanced mathematics, intended as a transition to upper division courses including MATH 4107, 4150 and 4317. Fundamentals of mathematical abstraction including sets, logic, equivalence relations, and functions. Thorough development of the basic proof techniques: direct, contrapositive, existence, contradiction, and induction. Introduction to proofs in analysis and algebra.

## Calculus for Life Sciences

Overview of integral calculus, multivariable calculus, and differential equations for biological sciences. This course is required for students in School of Biology.

## Numerical Analysis I

Introduction to numerical algorithms for some basic problems in computational mathematics. Discussion of both implementation issues and error analysis. Crosslisted with CX 4640 (formerly CS 4642).

## Classical Mathematical Methods in Engineering

Fourier series, Fourier integrals, boundary value problems for partial differential equations, eigenvalue problems

## Complex Analysis

Topics from complex function theory, including contour integration and conformal mapping

## Analysis II

Differentiation of functions of one real variable, Riemann-Stieltjes integral, the derivative in R^n and integration in R^n

## Analysis I

Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, Fourier series

## Topics in Linear Algebra

Linear algebra in R^n, standard Euclidean inner product in R^n, general linear spaces, general inner product spaces, least squares, determinants, eigenvalues and eigenvectors, symmetric matrices.

## Introduction to Information Theory

The measurement and quantification of information. These ideas are applied to the probabilistic analysis of the transmission of information over a channel along which random distortion of the message occurs.

## Mathematical Statistics II

Hypothesis testing, likelihood ratio tests, nonparametric tests, bivariate and multivariate normal distributions

## Pages 