Primes and unique factorization, congruences, Chinese remainder theorem, Diophantine equations, Diophantine approximations, quadratic reciprocity. Applications such as fast multiplication, factorization and encryption.
This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures." There will be a very strong emphasis on theory and proofs.
Combinatorial problem-solving techniques including the use of generating functions, recurrence relations, Polya theory, combinatorial designs, Ramsey theory, matroids, and asymptotic analysis.
This course is a problem oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.
MATH 3215, MATH 3235, and MATH 3670 are mutually exclusive; students may not hold credit for more than one of these courses.
The fundamental group, covering spaces, core topics in homology and cohomology theory including CW complexes, universal coefficients, and Poincare duality.
This course covers the general mathematical theory of linear stationary and evolution problems plus selected topics chosen on the instructor's interests.
Complex integration, including Goursat's theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard's theorem.