Seminars and Colloquia by Series

Random graph processes with dependencies

Series
Job Candidate Talk
Time
Tuesday, November 17, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lutz WarnkeUniversity of Cambridge
Random graphs are the basic mathematical models for large-scale disordered networks in many different fields (e.g., physics, biology, sociology). Their systematic study was pioneered by Erdoes and Renyi around 1960, and one key feature of many classical models is that the edges appear independently. While this makes them amenable to a rigorous analysis, it is desirable (both mathematically and in terms of applications) to understand more complicated situations. In this talk I will discuss some of my work on so-called Achlioptas processes, which (i) are evolving random graph models with dependencies between the edges and (ii) give rise to more interesting percolation phase transition phenomena than the classical Erdoes-Renyi model.

Do polynomials dream of symmetric curves?

Series
Job Candidate Talk
Time
Tuesday, March 31, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrei Martinez-FinkelshteinUniversidad de Almeria, Spain
Polynomials defined either by some type of orthogonality or satisfying differential equations are pervasive in approximation theory, random matrix theory, special functions, harmonic analysis, scientific computing and applications. Numerical simulations show that their zeros exhibit a common feature: they align themselves along certain curves on the plane. What are these curves? In some cases we can answer this question, at least asymptotically. The answer connects fascinating mathematical objects, such as extremal problems in electrostatics, Riemann surfaces, trajectories of quadratic differentials, algebraic functions; this list is not complete. This talk is a brief survey of some ideas related to this problem, from the breakthrough developments in the 1980-ies to nowadays, finishing with some recent results and open problems.

What is Weak KAM Theory?

Series
Job Candidate Talk
Time
Tuesday, March 3, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Albert FathiENS Lyon
The goal of this lecture is to explain and motivate the connection between Aubry-Mather theory (Dynamical Systems), and viscosity solutions of the Hamilton-Jacobi equations (PDE). The connection is the content of weak KAM Theory. The talk should be accessible to the ''generic" mathematician. No a priori knowledge of any of the two subjects is assumed.

Dynamics of the Lorentzian constant mean curvature flow near some special solutions

Series
Job Candidate Talk
Time
Tuesday, February 10, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Willie WongEPFL (Switzerland)
We discuss asymptotic-in-time behavior of time-like constant meancurvature hypersurfaces in Minkowski space. These objects model extended relativistic test objects subject to constant normal forces, and appear in the classical field theory foundations of the theory of vibrating strings and membranes. From the point of view of their Cauchy problem, these hypersurfaces evolve according to a geometric system of quasilinear hyperbolic partial differential equations. Inthis talk we will focus on three explicit solutions to the equations:the Minkowski hyperplane, the static catenoid, and the expanding de Sitter space. Their stability properties in the context of the Cauchy problem will be discussed, with emphasis on the geometric origins of the various mechanisms and obstacles that come into play.

Low-Rank Recovery: From Convex to Nonconvex Methods

Series
Job Candidate Talk
Time
Monday, February 9, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xiaodong LiUniversity of Pennsylvania
Low-rank structures are common in modern data analysis and signal processing, and they usually play essential roles in various estimation and detection problems. It is challenging to recover the underlying low-rank structures reliably from corrupted or undersampled measurements. In this talk, we will introduce convex and nonconvex optimization methods for low-rank recovery by two examples. The first example is community detection in network data analysis. In the literature, it has been formulated as a low-rank recovery problem, and then SDP relaxation methods can be naturally applied. However, the statistical advantages of convex optimization approaches over other competitive methods, such as spectral clustering, were not clear. We show in this talk that the methodology of SDP is robust against arbitrary outlier nodes with strong theoretical guarantees, while standard spectral clustering may fail due to a small fraction of outliers. We also demonstrate that a degree-corrected version of SDP works well for a real-world network dataset with a heterogeneous distribution of degrees. Although SDP methods are provably effective and robust, the computational complexity is usually high and there is an issue of storage. For the problem of phase retrieval, which has various applications and can be formulated as a low-rank matrix recovery problem, we introduce an iterative algorithm induced by nonconvex optimization. We prove that our method converges reliably to the original signal. It requires far less storage and has much higher rate of convergence compared to convex methods.

Mathematical modeling of malaria transmission

Series
Job Candidate Talk
Time
Thursday, February 5, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Olivia ProsperDartmouth College
Sir Ronald Ross’ discovery of the transmission mechanism of malaria in 1897 inspired a suite of mathematical models for the transmission of vector-borne disease, known as Ross-Macdonald models. I introduce a common formulation of the Ross-Macdonald model and discuss its extension to address a current topic in malaria control: the introduction of malaria vaccines. Following over two decades of research, vaccine trials for the malaria vaccine RTS,S have been completed, demonstrating an efficacy of roughly 50% in young children. Regions with high malaria prevalence tend to have high levels of naturally acquired immunity (NAI) to severe malaria, leading to large asymptomatic populations. I introduce a malaria model developed to address concerns about how these vaccines will perform in regions with existing NAI, discuss some analytic results and their public health implications, and reframe our question as an optimal control problem.

Inversion, design of experiments, and optimal control in systems gov- erned by PDEs with random parameter functions

Series
Job Candidate Talk
Time
Tuesday, February 3, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alen AlexanderianUniversity of Texas at Austin
Mathematical models of physical phenomena often include parameters that are hard or impossible to measure directly or are subject to variability, and are thus considered uncertain. Different aspects of modeling under uncertainty include forward uncertainty propagation, statistical inver- sion of uncertain parameters, optimal design of experiments, and optimization under uncertainty. I will focus on recent advances in numerical methods for infinite-dimensional Bayesian inverse problems and optimal experimental de- sign. I will also discuss the problem of risk-averse optimization under uncertainty with applications to control of PDEs with uncertain parameters. The driving applications are systems governed by PDEs with uncertain parameter fields, such as ow in the subsurface with an uncertain permeability field, or the diffusive transport of a contaminant with an uncertain initial condition. Such problems are computationally challenging due to expensive forward PDE solves and infinite-dimensional (high-dimensional when discretized) parameter spaces.

Do Pancreatic Alpha Cells Control their Own Secretion or Follow the Orders of Other Cells?

Series
Job Candidate Talk
Time
Thursday, January 29, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Magaret WattsNIH
Diabetes is a disease of poor glucose control. Glucose is controlled by two hormones that work in opposite directions: insulin and glucagon. Pancreatic beta-cells release insulin when blood glucose is high, while pancreatic alpha-cells secrete glucagon when blood glucose is low. Both insulin and glucagon secretion are disregulated in people with diabetes. In these people, not enough insulin is secreted in response to elevated glucose levels, while the problem with glucagon secretion is two-fold: too much glucagon is secreted at high glucose levels, while not enough is secreted at low glucose levels. So far, the treatment of diabetes has focused solely on increasing insulin secretion from beta-cells. Therefore, understanding glucose regulated glucagon secretion may lead to new therapies for those with diabetes.There is an ongoing debate as to whether glucose suppresses glucagon secretion directly through an intrinsic mechanism, within the alpha-cell, or indirectly through an extrinsic mechanism. I developed a mathematical model of glucagon secretion in alpha-cells and use it to show that they can control their own secretion. However, experimental evidence shows that factors secreted by pancreatic beta- and delta- cells can also affect glucagon secretion. Therefore, I created the BAD model for pancreatic islets which contains one representative cell of each type and the cellular interactions between them. I use this model to show that these paracrine effects suppress alpha-cell heterogeneity and suggest that delta-cells play a more important role in this than beta-cells.

Some phase transitions in the stochastic block model

Series
Job Candidate Talk
Time
Thursday, January 22, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joseph NeemanUniversity of Texas, Austin, TX
The stochastic block model is a random graph model that was originally introduced 30 years ago to model community structure in networks. To generate a random graph from this model, begin with two classes of vertices and then connect each pair of vertices independently at random, with probability p if they are in the same class and probability q otherwise. Some questions come to mind: can we reconstruct the classes if we only observe the graph? What if we only want to partially reconstruct the classes? How different is this model from an Erdos-Renyi graph anyway? The answers to these questions depend on p and q, and we will say exactly how.

Random polytopes and estimation of convex bodies

Series
Job Candidate Talk
Time
Tuesday, January 20, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Victor-Emmanuel BrunelYale University
In this talk we will discuss properties of some random polytopes. In particular, we first propose a deviation inequality for the convex hull of i.i.d. random points, uniformly distributed in a convex body. We then discuss statistical properties of this random polytope, in particular, its optimality, when one aims to estimate the support of the corresponding uniform distribution, if it is unknown.We also define a notion of multidimensional quantiles, related to the convex floating bodies, or Tukey depth level sets, for probability measures in a Euclidean space. When i.i.d. random points are available, these multidimensional quantiles can be estimated using their empirical version, similarly to the one-dimensional case, where order statistics estimate the usual quantiles.

Pages