Seminars and Colloquia by Series

Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential

Series
Stochastics Seminar
Time
Thursday, February 7, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Atilla YilmazTemple University
I will present joint work with Elena Kosygina and Ofer Zeitouni in which we prove the homogenization of a class of one-dimensional viscous Hamilton-Jacobi equations with random Hamiltonians that are nonconvex in the gradient variable. Due to the special form of the Hamiltonians, the solutions of these PDEs with linear initial conditions have representations involving exponential expectations of controlled Brownian motion in a random potential. The effective Hamiltonian is the asymptotic rate of growth of these exponential expectations as time goes to infinity and is explicit in terms of the tilted free energy of (uncontrolled) Brownian motion in a random potential. The proof involves large deviations, construction of correctors which lead to exponential martingales, and identification of asymptotically optimal policies.

Estimation of smooth functionals of high-dimensional covariance

Series
Stochastics Seminar
Time
Thursday, January 31, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
V. KoltchinskiiSOM, GaTech

We discuss a problem of asymptotically efficient (that is, asymptotically normal with minimax optimal limit variance) estimation of functionals of the form $\langle f(\Sigma), B\rangle$ of unknown covariance $\Sigma$ based on i.i.d.mean zero Gaussian observations $X_1,\dots, X_n\in {\mathbb R}^d$ with covariance $$\Sigma$. Under the assumptions that the dimension $d\leq n^{\alpha}$ for some $\alpha\in (0,1)$ and $f:{\mathbb R}\mapsto {\mathbb R}$ is of smoothness $s>\frac{1}{1-\alpha},$ we show how to construct an asymptotically efficient estimator of such functionals (the smoothness threshold $\frac{1}{1-\alpha}$ is known to be optimal for a simpler problem of estimation of smooth functionals of unknown mean of normal distribution).

The proof of this result relies on a variety of probabilistic and analytic tools including Gaussian concentration, bounds on the remainders of Taylor expansions of operator functions and bounds on finite differences of smooth functions along certain Markov chains in the spaces of positively semi-definite matrices.

Lower bounds for fluctuations in first-passage percolation

Series
Stochastics Seminar
Time
Thursday, January 24, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
M. DamronSOM, GaTech
In first-passage percolation (FPP), one assigns i.i.d. weights to the edges of the cubic lattice Z^d and analyzes the induced weighted graph metric. If T(x,y) is the distance between vertices x and y, then a primary question in the model is: what is the order of the fluctuations of T(0,x)? It is expected that the variance of T(0,x) grows like the norm of x to a power strictly less than 1, but the best lower bounds available are (only in two dimensions) of order \log |x|. This result was found in the '90s and there has not been any improvement since. In this talk, we discuss the problem of getting stronger fluctuation bounds: to show that T(0,x) is with high probability not contained in an interval of size o(\log |x|)^{1/2}, and similar statements for FPP in thin cylinders. Such a statement has been proved for special edge-weight distributions by Pemantle-Peres ('95) and Chatterjee ('17). In work with J. Hanson, C. Houdré, and C. Xu, we extend these bounds to general edge-weight distributions. I will explain some of the methods we use, including an old and elementary "small ball" probability result for functions on the hypercube.

Stein's Method for Infinitely Divisible Laws With Finite First Moment

Series
Stochastics Seminar
Time
Thursday, January 17, 2019 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Benjamin ArrasUniversity of Lille
Stein's method is a powerful technique to quantify proximity between probability measures, which has been mainly developed in the Gaussian and the Poisson settings. It is based on a covariance representation which completely characterizes the target probability measure. In this talk, I will present some recent unifying results regarding Stein's method for infinitely divisible laws with finite first moment. In particular, I will present new quantitative results regarding Compound Poisson approximation of infinitely divisible laws, approximation of self-decomposable distributions by sums of independent summands and stability results for self-decomposable laws which satisfy a second moment assumption together with an appropriate Poincaré inequality. This is based on joint works with Christian Houdré.

Prevalence of heavy-tailed distributions in systems with multiple scales: insights through stochastic averaging

Series
Stochastics Seminar
Time
Thursday, November 29, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rachel KuskeSchool of Mathematics, GaTech
Heavy tailed distributions have been shown to be consistent with data in a variety of systems with multiple time scales. Recently, increasing attention has appeared in different phenomena related to climate. For example, correlated additive and multiplicative (CAM) Gaussian noise, with infinite variance or heavy tails in certain parameter regimes, has received increased attention in the context of atmosphere and ocean dynamics. We discuss how CAM noise can appear generically in many reduced models. Then we show how reduced models for systems driven by fast linear CAM noise processes can be connected with the stochastic averaging for multiple scales systems driven by alpha-stable processes. We identify the conditions under which the approximation of a CAM noise process is valid in the averaged system, and illustrate methods using effectively equivalent fast, infinite-variance processes. These applications motivate new stochastic averaging results for systems with fast processes driven by heavy-tailed noise. We develop these results for the case of alpha-stable noise, and discuss open problems for identifying appropriate heavy tailed distributions for these multiple scale systems. This is joint work with Prof. Adam Monahan (U Victoria) and Dr. Will Thompson (UBC/NMi Metrology and Gaming).

Random walks with relocations and memory through random recursive trees

Series
Stochastics Seminar
Time
Thursday, November 15, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Geronimo UribeUNAM
(Based on joint work with Cécile Mailler)Consider a stochastic process that behaves as a d-dimensional simple and symmetric random walk, except that, with a certain fixed probability, at each step, it chooses instead to jump to a given site with probability proportional to the time it has already spent there. This process has been analyzed in the physics literature under the name "random walk with preferential relocations", where it is argued that the position of the walker after n steps, scaled by log(n), converges to a Gaussian random variable; because of the log spatial scaling, the process is said to undergo a "slow diffusion". We generalize this model by allowing the underlying random walk to be any Markov process and the random run-lengths (time between two relocations) to be i.i.d.-distributed. We also allow the memory of the walker to fade with time, meaning that when a relocations occurs, the walker is more likely to go back to a place it has visited more recently. We prove rigorously the central limit theorem described above by associating to the process a growing family of vertex-weighted random recursive trees and a Markov chain indexed by this tree. The spatial scaling of our relocated random walk is related to the height of a typical vertex in the random tree. This typical height can range from doubly-logarithmic to logarithmic or even a power of the number of nodes of the tree, depending on the form of the memory.

Stabilization of Diffusion Limited Aggregation in a Wedge

Series
Stochastics Seminar
Time
Thursday, October 25, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eviatar ProcacciaTexas A&M
We prove a discrete Beurling estimate for the harmonic measure in a wedge in $\mathbf{Z}^2$, and use it to show that Diffusion Limited Aggregation (DLA) in a wedge of angle smaller than $\pi/4$ stabilizes. This allows to consider the infinite DLA as a finite time growth process and questions about the number of arms, growth and dimension. I will present some conjectures and open problems. This is joint work with Ron Rosenthal (Technion) and Yuan Zhang (Pekin University).

Lectures on Combinatorial Statistics: 2

Series
Stochastics Seminar
Time
Thursday, October 18, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Gabor LugosiPompeu Fabra University, Barcelona
In these lectures we discuss some statistical problems with an interesting combinatorial structure behind. We start by reviewing the "hidden clique" problem, a simple prototypical example with a surprisingly rich structure. We also discuss various "combinatorial" testing problems and their connections to high-dimensional random geometric graphs. Time permitting, we study the problem of estimating the mean of a random variable

Majority vote model on the 3-regular tree

Series
Stochastics Seminar
Time
Thursday, October 11, 2018 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael DamronGeorgia Institute of Technology
In the continuous-time majority vote model, each vertex of a graph is initially assigned an ``opinion,'' either 0 or 1. At exponential times, vertices update their values by assuming the majority value of their neighbors. This model has been studied extensively on Z^d, where it is known as the zero-temperature limit of Ising Glauber dynamics. I will review some of the major questions and conjectures on lattices, and then explain some new work with Arnab Sen (Minnesota) on the 3-regular tree. We relate the majority vote model to a new model, which we call the median process, and use this process to answer questions about the limiting state of opinions. For example, we show that when the initial state is given by a Bernoulli(p) product measure, the probability that a vertex's limiting opinion is 1 is a continuous function of p.

Pages