Robust construction of the incipient infinite cluster in high-dimensional percolation
- Series
- Stochastics Seminar
- Time
- Thursday, April 24, 2025 - 15:30 for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Pranav Chinmay – CUNY graduate center – pchinmay@gradcenter.cuny.edu
The incipient infinite cluster was first proposed by physicists in the 1970s as a canonical example of a two-dimensional medium on which random walk is subdiffusive. It is the measure obtained in critical percolation by conditioning on the existence of an infinite cluster, which is a probability zero event. Kesten presented the first rigorous two-dimensional construction of this object as a weak limit of the one-arm event. In high dimensions, van der Hofstad and Jarai constructed the IIC as a weak limit of the two-point connection using the lace expansion. Our work presents a new high-dimensional construction which is "robust", establishing that the weak limit is independent of the choice of conditioning. The main tools used are Kesten's original two-dimensional construction combined with Kozma and Nachmias' regularity method. Our robustness allows for several applications, such as the explicit computation of the limiting distribution of the chemical distance, which forms the content of our upcoming project. This is joint work with Shirshendu Chatterjee, Jack Hanson, and Philippe Sosoe. The preprint can be found at https://arxiv.org/abs/2502.10882.