Seminars and Colloquia by Series

A Few Thoughts on Deep Learning-Based Scientific Computing

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 26, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/884917410
Speaker
Haizhao YangPurdue University

The remarkable success of deep learning in computer science has evinced potentially great applications of deep learning in computational and applied mathematics. Understanding the mathematical principles of deep learning is crucial to validating and advancing deep learning-based scientific computing. We present a few thoughts on the theoretical foundation of this topic and our methodology for designing efficient solutions of high-dimensional and highly nonlinear partial differential equations, mainly focusing on the approximation and optimization of deep neural networks.

Oriented Matroids from Triangulations of Products of Simplices (note the unusual time: 4pm)

Series
Combinatorics Seminar
Time
Friday, October 23, 2020 - 16:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke)
Speaker
Chi Ho YuenBrown University

We introduce a construction of oriented matroids from any triangulation of a product of two simplices, extending the regular case which follows from signed tropicalization. For this, we use the structure of such a triangulation in terms of polyhedral matching fields. The oriented matroid is composed of compatible chirotopes on the cells in a matroid subdivision of the hypersimplex, which might be of independent interest. We will also describe the extension to matroids over hyperfields and sketch some connections with optimization. This is joint work with Marcel Celaya and Georg Loho; Marcel Celaya will be giving a talk on the topological aspect of the work at the algebra seminar next week.

Please note the unusual time: 4pm

The Sunflower Problem

Series
ACO Student Seminar
Time
Friday, October 23, 2020 - 13:00 for 1 hour (actually 50 minutes)
Location
Online
Speaker
Tolson BellMath, Georgia Tech

A sunflower with p petals consists of p sets whose pairwise intersections are all the same set. The goal of the sunflower problem is to find the smallest r = r(p,k) such that every family of at least r^k k-element sets must contain a sunflower with p petals. Major breakthroughs within the last year by Alweiss-Lovett-Wu-Zhang and others show that r = O(p log(pk)) suffices. In this talk, after reviewing the history and significance of the Sunflower Problem, I will present our improvement to r = O(p log k), which we obtained during the 2020 REU at Georgia Tech. As time permits, I will elaborate on key lemmas and techniques used in recent improvements.

Based on joint work with Suchakree Chueluecha (Lehigh University) and Lutz Warnke (Georgia Tech), see https://arxiv.org/abs/2009.09327

Alice in Königsberg

Series
Other Talks
Time
Thursday, October 22, 2020 - 20:00 for 30 minutes
Location
ONLINE at https://zoom.us/j/93502013825
Speaker
Evans Harrell and GT Club Math studentsGeorgia Tech

This skit recounts one of the foundation stories of mathematics, the puzzle of the Seven Bridges of Königsberg, solved by Euler in 1726.  Except that it all takes place in a mad courtroom, and you are the jury!

Higher-order fluctuations in dense random graph models (note the unusual time/day)

Series
Combinatorics Seminar
Time
Thursday, October 22, 2020 - 17:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke)
Speaker
Adrian RoellinNational University of Singapore

Dense graph limit theory is essentially a first-order limit theory analogous to the classical Law of Large Numbers. Is there a corresponding central limit theorem? We believe so. Using the language of Gaussian Hilbert Spaces and the comprehensive theory of generalised U-statistics developed by Svante Janson in the 90s, we identify a collection of Gaussian measures (aka white noise processes) that describes the fluctuations of all orders of magnitude for a broad family of random graphs. We complement the theory with error bounds using a new variant of Stein’s method for multivariate normal approximation, which allows us to also generalise Janson’s theory in some important aspects. This is joint work with Gursharn Kaur.

Please note the unusual time/day.

Higher-order fluctuations in dense random graph models (note the unusual time: 5pm)

Series
Stochastics Seminar
Time
Thursday, October 22, 2020 - 17:00 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/751242993/PASSWORD (To receive the password, please email Lutz Warnke)
Speaker
Adrian RoellinNational University of Singapore

Dense graph limit theory is essentially a first-order limit theory analogous to the classical Law of Large Numbers. Is there a corresponding central limit theorem? We believe so. Using the language of Gaussian Hilbert Spaces and the comprehensive theory of generalised U-statistics developed by Svante Janson in the 90s, we identify a collection of Gaussian measures (aka white noise processes) that describes the fluctuations of all orders of magnitude for a broad family of random graphs. We complement the theory with error bounds using a new variant of Stein’s method for multivariate normal approximation, which allows us to also generalise Janson’s theory in some important aspects. This is joint work with Gursharn Kaur.

Please note the unusual time: 5pm

Generalized sum-product phenomena and a related coloring problem

Series
Graph Theory Seminar
Time
Tuesday, October 20, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Yifan JingUniversity of Illinois at Urbana-Champaign

In the first part of the talk, I will show that for two bivariate polynomials $P(x,y)$ and $Q(x,y)$ with coefficients in fields with char 0 to simultaneously exhibit small expansion, they must exploit the underlying additive or multiplicative structure of the field in nearly identical fashion. This in particular generalizes the main result of Shen and yields an Elekes-Ronyai type structural result for symmetric nonexpanders, resolving a question mentioned by de Zeeuw (Joint with S. Roy and C-M. Tran). In the second part of the talk, I will show how this sum-product phenomena helps us avoid color-isomorphic even cycles in proper edge colorings of complete graphs (Joint with G. Ge, Z. Xu, and T. Zhang).

Quantitative stability for minimizing Yamabe metrics

Series
Analysis Seminar
Time
Tuesday, October 20, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
https://us02web.zoom.us/j/71579248210?pwd=d2VPck1CbjltZStURWRWUUgwTFVLZz09
Speaker
Robin NeumayerNorthwestern University

The Yamabe problem asks whether, given a closed Riemannian manifold, one can find a conformal metric of constant scalar curvature (CSC). An affirmative answer was given by Schoen in 1984, following contributions from Yamabe, Trudinger, and Aubin, by establishing the existence of a function that minimizes the so-called Yamabe energy functional; the minimizing function corresponds to the conformal factor of the CSC metric.

We address the quantitative stability of minimizing Yamabe metrics. On any closed Riemannian manifold we show—in a quantitative sense—that if a function nearly minimizes the Yamabe energy, then the corresponding conformal metric is close to a CSC metric. Generically, this closeness is controlled quadratically by the Yamabe energy deficit. However, we construct an example demonstrating that this quadratic estimate is false in the general. This is joint work with Max Engelstein and Luca Spolaor.

Pages