Seminars and Colloquia by Series

Wednesday, May 15, 2019 - 14:00 , Location: Skile 006 , Roger Casals , UC Davis , Organizer:
Monday, April 22, 2019 - 15:30 , Location: Skiles 006 , Eli Grigsby , Boston College , Organizer: Caitlin Leverson

One can regard a (trained) feedforward neural network as a particular type of function \mathbb{R}^d \rightarrow (0,1), where \mathbb{R}^d is a (typically high-dimensional) Euclidean space parameterizing some data set, and the value N(x) \in (0,1) of the function on a data point x is the probability that the answer to a particular yes/no question is "yes." It is a classical result in the subject that a sufficiently complex neural network can approximate any function on a bounded set. Last year, J. Johnson proved that universality results of this kind depend on the architecture of the neural network (the number and dimensions of its hidden layers). His argument was novel in that it provided an explicit topological obstruction to representability of a function by a neural network, subject to certain simple constraints on its architecture. I will tell you just enough about neural networks to understand how Johnson's result follows from some very simple ideas in piecewise linear geometry. Time permitting, I will also describe some joint work in progress with K. Lindsey aimed at developing a general theory of how the architecture of a neural network constrains its topological expressiveness.

Monday, April 22, 2019 - 14:00 , Location: Skiles 006 , Adam Levine , Duke University , Organizer: Caitlin Leverson

Given an m-dimensional manifold M that is homotopy equivalent to an n-dimensional manifold N (where n<m), a spine of M is a piecewise-linear embedding of N into M (not necessarily locally flat) realizing the homotopy equivalence. When m-n=2 and m>4, Cappell and Shaneson showed that if M is simply-connected or if m is odd, then it contains a spine. In contrast, I will show that there exist smooth, compact, simply-connected 4-manifolds which are homotopy equivalent to the 2-sphere but do not contain a spine (joint work with Tye Lidman). I will also discuss some related results about PL concordance of knots in homology spheres (joint with Lidman and Jen Hom).

Monday, April 15, 2019 - 14:00 , Location: Skiles 006 , Patrick Orson , Boston College , patrick.orson@bc.edu , Organizer: JungHwan Park

The question of which high-dimensional knots are slice was entirely solved by Kervaire and Levine. Compared to this, the question of which knots are doubly slice in high-dimensions is still a largely open problem. Ruberman proved that in every dimension, some version of the Casson-Gordon invariants can be applied to obtain algebraically doubly slice knots that are not doubly slice. I will show how to use L^2 signatures to recover the result of Ruberman for (4k-3)-dimensional knots, and discuss how the derived series of the knot group might be used to organise the high-dimensional doubly slice problem.

Monday, April 8, 2019 - 14:00 , Location: Skiles 006 , Tye Lidman , NCSU , Organizer: Jennifer Hom

We will use Heegaard Floer homology to analyze maps between a certain family of three-manifolds akin to the Gromov norm/hyperbolic volume.  Along the way, we will study the Heegaard Floer homology of splices.  This is joint work with Cagri Karakurt and Eamonn Tweedy.

Wednesday, April 3, 2019 - 14:00 , Location: Skiles 006 , Peter Feller , ETH Zurich , peter.feller@math.ethz.ch , Organizer: JungHwan Park

Following an idea of Hugelmeyer, we give a knot theory reproof of a theorem of Schnirelman: Every smooth Jordan curve in the Euclidian plane has an inscribed square. We will comment on possible generalizations to more general Jordan curves.

Our main knot theory result is that the torus knot T(2n,1) in S^1xS^2 does not arise as the boundary of a locally-flat Moebius band in S^1xB^3 for square-free integers n>1. For context, we note that for n>2 and the smooth setting, this result follows from a result of Batson about the non-orientable 4-genus of certain torus knots. However, we show that Batson's result does not hold in the locally flat category: the smooth and topological non-orientable 4-genus differ for the T(9,10) torus knot in S^3.

Based on joint work with Marco Golla.

Monday, April 1, 2019 - 14:00 , Location: Skiles 006 , Ahmad Issa , University of Texas, Austin , Organizer: Jennifer Hom

Which 3-manifolds smoothly embed in the 4-sphere? This seemingly simple question turns out to be rather subtle. Using Donaldson's theorem, we derive strong restrictions to embedding a Seifert fibered space over an orientable base surface, which in particular gives a complete classification when e > k/2, where k is the number of exceptional fibers and e is the normalized central weight. Our results point towards a couple of interesting conjectures which I'll discuss. This is joint work with Duncan McCoy.

Monday, March 25, 2019 - 16:00 , Location: Boyd , Christine Ruey Shan Lee , University of South Alabama , Organizer: Caitlin Leverson
Monday, March 25, 2019 - 14:30 , Location: Boyd , Nathan Dowlin , Dartmouth , Organizer: Caitlin Leverson

Khovanov homology and knot Floer homology are two knot invariants which are defined using very different techniques, with Khovanov homology having its roots in representation theory and knot Floer homology in symplectic geometry. However, they seem to contain a lot of the same topological data about knots. Rasmussen conjectured that this similarity stems from a spectral sequence from Khovanov homology to knot Floer homology. In this talk I will give a construction of this spectral sequence. The construction utilizes a recently defined knot homology theory HFK_2 which provides a framework in which the two theories can be related.

Monday, March 18, 2019 - 14:00 , Location: Skiles 006 , None , None , Organizer: John Etnyre

Pages