Approximation of Functions Over Manifolds by Moving Least Squares
- Series
- Applied and Computational Mathematics Seminar
- Time
- Monday, October 16, 2017 - 14:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 005
- Speaker
- Dr. Barak Sober – Tel Aviv University – barakino@gmail.com
We approximate a function defined over a $d$-dimensional manifold $M
⊂R^n$ utilizing only noisy function values at noisy locations on the manifold. To produce
the approximation we do not require any knowledge regarding the manifold
other than its dimension $d$. The approximation scheme is based upon the
Manifold Moving Least-Squares (MMLS) and is therefore resistant to noise in
the domain $M$ as well. Furthermore, the approximant is shown to be smooth
and of approximation order of $O(h^{m+1})$ for non-noisy data, where $h$ is
the mesh size w.r.t $M,$ and $m$ is the degree of the local polynomial
approximation. In addition, the proposed algorithm is linear in time with
respect to the ambient space dimension $n$, making it useful for cases
where d is much less than n. This assumption, that the high dimensional data is situated
on (or near) a significantly lower dimensional manifold, is prevalent in
many high dimensional problems. Thus, we put our algorithm to numerical
tests against state-of-the-art algorithms for regression over manifolds and
show its dominance and potential.