Seminars and Colloquia by Series

From Sparsity to Rank, and Beyond: algebra, geometry, and convexity

Series
School of Mathematics Colloquium
Time
Monday, October 24, 2011 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Pablo ParriloMIT
Optimization problems involving sparse vectors or low-rank matrices are of great importance in applied mathematics and engineering. They provide a rich and fruitful interaction between algebraic-geometric concepts and convex optimization, with strong synergies with popular techniques like L1 and nuclear norm minimization. In this lecture we will provide a gentle introduction to this exciting research area, highlighting key algebraic-geometric ideas as well as a survey of recent developments, including extensions to very general families of parsimonious models such as sums of a few permutations matrices, low-rank tensors, orthogonal matrices, and atomic measures, as well as the corresponding structure-inducing norms.Based on joint work with Venkat Chandrasekaran, Maryam Fazel, Ben Recht, Sujay Sanghavi, and Alan Willsky.

On the Square Dependence Problem

Series
School of Mathematics Colloquium
Time
Thursday, September 29, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ernie CrootGeorgia Tech
In many integer factoring algorithms, one produces a sequence of integers (created in a pseudo-random way), and wishes to rapidly determine a subsequence whose product is a square (which we call a `square product'). In his lecture at the 1994 International Congress of Mathematicians, Pomerance observed that the following problem encapsulates all of the key issues: Select integers a1, a2, ..., at random from the interval [1,x], until some (non-empty) subsequence has product equal to a square. Find good esimates for the expected stopping time of this process. A good solution to this problem should help one to determine the optimal choice of parameters for one's factoring algorithm, and therefore this is a central question. In this talk I will discuss the history of this problem, and its somewhat recent solution due to myself, Andrew Granville, Robin Pemantle, and Prasad Tetali.

On the coefficients of a bivariate rational function

Series
School of Mathematics Colloquium
Time
Thursday, September 15, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Robin PemantleMath, University of Pennsylvania
Problem: describe the asymptotic behavior of the coefficients a_{ij} of the Taylor series for 1/Q(x,y) where Q is a polynomial. This problem is the simplest of a number of such problems arising in analytic combinatorics whose answer was not until recently known. In joint work with J. van der Hoeven and T. DeVries, we give a solution that is completely effective and requires only assumptions that are met in the generic case. Symbolic algebraic computation and homotopy continuation tools are required for implementation.

Topology of representation varieties of surface groups

Series
School of Mathematics Colloquium
Time
Thursday, April 21, 2011 - 11:01 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Richard WentworthUniversity of Maryland
This will be a survey talk on some aspects of the geometry and topology of moduli spaces of representations of surface groups into Lie groups. I will discuss recent generalizations of the techniques of Atiyah and Bott on equivariant Morse theory. These extend results on stable bundles to Higgs bundles and associated moduli spaces, which correspond to representation varieties into noncompact Lie groups

Sequential Minimum Energy Designs: From Nano Experiments to Global Optimization

Series
School of Mathematics Colloquium
Time
Thursday, April 14, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jeff WuISyE GATech
Motivated by a problem in the synthesis of nanowires, a sequential space filling design, called Sequential Minimum Energy Design (SMED), is proposed for exploring and searching for the optimal conditions in complex black-box functions. The SMED is a novel approach to generate designs that are model independent, can quickly carve out regions with no observable nanostructure morphology, allow for the exploration of complex response surfaces, and can be used for sequential experimentation. It can be viewed as a sequential design procedure for stochastic functions and a global optimization procedure for deterministic functions. The basic idea has been developed into an implementable algorithm, and guidelines for choosing the parameters of SMED have been proposed. Convergence of the algorithm has been established under certain regularity conditions. Performance of the algorithm has been studied using experimental data on nanowire synthesis as well as standard test functions.(Joint work with V. R. Joseph, Georgia Tech and T. Dasgupta, Harvard U.)

Geometric complexity and topological rigidity

Series
School of Mathematics Colloquium
Time
Thursday, March 17, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guoliang YuVanderbilt University
In this talk, I will introduce a notion of geometric complexity  to study topological rigidity of manifolds. This is joint work with Erik Guentner and Romain Tessera. I will try to make this talk accessible to graduate students and non experts.

Where to place a hole to achieve fastest escape (What are the best sink and source in a network)

Series
School of Mathematics Colloquium
Time
Thursday, February 24, 2011 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Leonid BunimovichGeorgia Institute of Technology
Consider any dynamical system with the phase space (set of all states) M. One gets an open dynamical system if M has a subset H (hole) such that any orbit escapes ("disappears") after hitting H. The question in the title naturally appears in dealing with some experiments in physics, in some problems in bioinformatics, in coding theory, etc. However this question was essentially ignored in the dynamical systems theory. It occurred that it has a simple and counter intuitive answer. It also brings about a new characterization of periodic orbits in chaotic dynamical systems. Besides, a duality with Dynamical Networks allows to introduce dynamical characterization of the nodes (or edges) of Networks, which complements such static characterizations as centrality, betweenness, etc. Surprisingly this approach allows to obtain new results about such classical objects as Markov chains and introduce a hierarchy in the set of their states in regard of their ability to absorb or transmit an "information". Most of the results come from a finding that one can make finite (rather than traditional large) time predictions on behavior of dynamical systems even if they do not contain any small parameter. It looks plausible that a variety of problems in dynamical systems, probability, coding, imaging ... could be attacked now. No preliminary knowledge is required. The talk will be accessible to students.

Evolution problem in General Relativity

Series
School of Mathematics Colloquium
Time
Thursday, January 27, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Igor RodnianskiPrinceton University
The talk will introduce basic mathematical concepts of General Relativity and review the progress, main challenges and open problems, viewed through the prism of the evolution problem. I will illustrate interaction of Geometry and PDE methods in the context of General Relativity on examples ranging from incompleteness theorems and formation of trapped surfaces to geometric properties of black holes and their stability.

An inverse problem arising in decoding of bar codes

Series
School of Mathematics Colloquium
Time
Thursday, January 20, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fadil SantosaUniversity of Minnesota (Minneapolis)
Information encoded in a bar code can be read using a laser scanner or a camera-based scanner. For one-dimensional bar codes, which are in most prevalent use, the information that needs to be extracted are the widths of the black and white bars. The collection of black and white bars may be viewed as a binary one-dimensional image. The signal measured at the scanner amounts to the convolution of the binary image with a smoothing kernel. The challenge is that the smoothing kernel, in addition to the binary image, is also unknown. This presentation will review the technology behind bar code scanning and present several approaches to the decoding problem.

Convex Algebraic Geometry

Series
School of Mathematics Colloquium
Time
Thursday, November 11, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Bernd SturmfelsUC Berkeley
Convex algebraic geometry is an emerging field at the interface of convex optimizationand algebraic geometry. A primary focus lies on the mathematical underpinnings ofsemidefinite programming. This lecture offers a self-contained introduction. Startingwith elementary questions concerning multifocal ellipses in the plane, we move on todiscuss the geometry of spectrahedra and orbitopes, and we end with recent resultson the convex hull of a real algebraic variety.

Pages