Seminars and Colloquia by Series

ε-series by Corrine Yap, Jing Yu, and Changxin Ding

Series
Graph Theory Seminar
Time
Friday, March 8, 2024 - 15:15 for 1 hour (actually 50 minutes)
Location
Skiles 308
Speaker
Corrine Yap, Jing Yu, and Changxin DingGeorgia Tech

Corrine Yap:  The Ising model is a classical model originating in statistical physics; combinatorially it can be viewed as a probability distribution over 2-vertex-colorings of a graph. We will discuss a fixed-magnetization version—akin to fixing the number of, say, blue vertices in every coloring—and a natural Markov chain sampling algorithm called the Kawasaki dynamics. We show some surprising results regarding the existence and location of a fast/slow mixing threshold for these dynamics. (joint work with Aiya Kuchukova, Marcus Pappik, and Will Perkins)


Changxin Ding: For trees on a fixed number of vertices, the path and the star are two extreme cases. Many graph parameters attain its maximum at the star and its minimum at the path among these trees. A trivial example is the number of leaves. I will introduce more interesting examples in the mini talk.

Jing Yu: We show that all simple outerplanar graphs G with minimum degree at least 2 and positive Lin-Lu-Yau Ricci curvature on every edge have maximum degree at most 9. Furthermore, if G is maximally outerplanar, then G has at most 10 vertices. Both upper bounds are sharp.

Slow subgraph bootstrap percolation (Tibor Szabó, Freie Universität Berlin)

Series
Graph Theory Seminar
Time
Tuesday, March 5, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tibor SzabóFreie Universität Berlin

 For a graph $H$ and an $n$-vertex graph $G$, the $H$-bootstrap percolation process on $G$ is the process which starts with $G$ and, at every time step, adds any missing edges on the vertices of $G$ that complete a copy of $H$. This process eventually stabilises and we are interested in the extremal question raised by Bollob\'as, of determining the maximum \emph{running time} (number of time steps before stabilising) of this process, over all possible choices of $n$-vertex graph $G$. We initiate a systematic study of this parameter, denoted $M_H(n)$, and its dependence on properties of the graph $H$. In a series of works we determine the precise running time for cycles and asymptotic running time for several other important classes. In general, we study necessary and sufficient conditions on $H$ for fast, i.e. sublinear or linear $H$-bootstrap percolation, and in particular explore the relationship between running time and minimum vertex degree and connectivity. Furthermore we also obtain the running time of the process for typical $H$ and discover several graphs exhibiting surprising behavior.  The talk represents joint work with David Fabian and Patrick Morris.

Recent advances on extremal problems of k-critical graphs (Jie Ma, University of Science and Technology of China)

Series
Graph Theory Seminar
Time
Tuesday, February 27, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jie MaUniversity of Science and Technology of China

 A graph is called k-critical if its chromatic number is k but any proper subgraph has chromatic number less than k. There have been extensive reseaches on k-critical graphs over the past decades, yet several basic problems remain widely open. One of such problems is to determine the maximum number of edges in an n-vertex k-critical graph. In this talk, we will discuss some recent results on extremal aspects of k-critical graphs, including improvments on the extremal number of edges/cliques/critical subgraphs in k-critical graphs.  This is based on some joint works with Jun Gao, Cong Luo and Tianchi Yang. 

Thresholds for random Ramsey problems (Joseph Hyde (UVic))

Series
Graph Theory Seminar
Time
Tuesday, February 20, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joseph HydeUniversity of Victoria

 The study of Ramsey properties of the binomial random graph G_{n,p} was initiated in the 80s by Frankl & Rödl and Łuczak, Ruciński & Voigt. In this area we are often interested in establishing what function f(n) governs G_{n,p} having a particular Ramsey-like property P or not, i.e. when p is sufficiently larger than f(n) then G_{n,p} a.a.s. has P and when p is sufficiently smaller than f(n) then G_{n,p} a.a.s. does not have P (the former we call a 1-statement, the latter a 0-statement). I will present recent results on this topic from two different papers.

In the first, we almost completely resolve an outstanding conjecture of Kohayakawa and Kreuter on asymmetric Ramsey properties. In particular, we reduce the 0-statement to a necessary colouring problem which we solve for almost all pairs of graphs. Joint work with Candy Bowtell and Robert Hancock.

In the second, we prove similar results concerning so-called anti- and constrained-Ramsey properties. In particular, we (essentially) completely resolve the outstanding parts of the problem of determining the threshold function for the constrained-Ramsey property, and we reduce the anti-Ramsey problem to a necessary colouring problem which we prove for a specific collection of graphs. Joint work with Natalie Behague, Robert Hancock, Shoham Letzter and Natasha Morrison.

Combinatoric derivations in extremal graph theory and Sidorenko's conjecture (Daniel Brosch, University of Klagenfurt)

Series
Graph Theory Seminar
Time
Tuesday, February 13, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel BroschUniversity of Klagenfurt

Sidorenko's conjecture can be formulated as "Let $H$ be a bipartite graph, and $\rho\in [0,1]$. Of all the graphs with edge density $\rho$, the graph(-limit) obtained by picking edges uniformly at random minimizes the homomorphism density of $H$." This conjecture, first formulated in 1991 by Sidorenko, has received considerable attention over the last decades, and yet remains open in the general case.
 
It was shown recently [Blekherman, Raymond, Singh, Thomas, 2020] that sums-of-squares in Razborov's flag algebra are not strong enough to prove even small, known cases of the conjecture. To circumvent this, we introduce a novel kind of derivation of flags. Due to their combinatoric nature, we can use them to systematically gain knowledge on global minimizers of problems in extremal graph theory. We combine them with the flag algebra method to find new proofs for various cases of Sidorenko's conjecture. 

New lower bounds for sphere packings and independence sets via randomness

Series
Graph Theory Seminar
Time
Tuesday, February 6, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Marcus MichelenUniversity of Illinois, Chicago

We show new lower bounds for sphere packings in high dimensions and for independent sets in graphs with not too large co-degrees.  For dimension d, this achieves a sphere packing of density (1 + o(1)) d log d / 2^(d+1).  In general dimension, this provides the first asymptotically growing improvement for sphere packing lower bounds since Roger's bound of c*d/2^d in 1947.  The proof amounts to a random (very dense) discretization together with a new theorem on constructing independent sets on graphs with not too large co-degree.  Both steps will be discussed, and no knowledge of sphere packings will be assumed or required.  This is based on joint work with Marcelo Campos, Matthew Jenssen and Julian Sahasrabudhe.

Subsquares in random Latin squares and rectangles

Series
Graph Theory Seminar
Time
Tuesday, December 5, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex DivouxGeorgia Tech

A $k \times n$ partial Latin rectangle is \textit{$C$-sparse} if the number of nonempty entries in each row and column is at most $C$ and each symbol is used at most $C$ times. We prove that the probability a uniformly random $k \times n$ Latin rectangle, where $k < (1/2 - \alpha)n$, contains a $\beta n$-sparse partial Latin rectangle with $\ell$ nonempty entries is $(\frac{1 \pm \varepsilon}{n})^\ell$ for sufficiently large $n$ and sufficiently small $\beta$. Using this result, we prove that a uniformly random order-$n$ Latin square asymptotically almost surely has no Latin subsquare of order greater than $c\sqrt{n\log n}$ for an absolute constant $c$. This is joint work with Tom Kelly, Camille Kennedy, and Jasdeep Sidhu.

Turán and Ramsey problems in vector spaces over finite fields

Series
Graph Theory Seminar
Time
Tuesday, November 28, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Bryce FredericksonEmory University

Turán-type problems ask for the densest-possible structure which avoids a fixed substructure H. Ramsey-type problems ask for the largest possible "complete" structure which can be decomposed into a fixed number of H-free parts. We discuss some of these problems in the context of vector spaces over finite fields. In the Turán setting, Furstenberg and Katznelson showed that any constant-density subset of the affine space AG(n,q) must contain a k-dimensional affine subspace if n is large enough. On the Ramsey side of things, a classical result of Graham, Leeb, and Rothschild implies that any red-blue coloring of the projective space PG(n-1,q) must contain a monochromatic k-dimensional projective subspace, for n large. We highlight the connection between these results and show how to obtain new bounds in the latter (projective Ramsey) problem from bounds in the former (affine Turán) problem. This is joint work with Liana Yepremyan.

Subgraphs in multipartite graphs

Series
Graph Theory Seminar
Time
Tuesday, November 14, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yi ZhaoGeorgia State University

In 1975 Bollobas, Erdos, and Szemeredi asked the following question: given positive integers $n, t, r$ with $2\le t\le r$, what is the largest minimum degree among all $r$-partite graphs G with parts of size $n$ and which do not contain a copy of $K_t$? The $r=t$ case has attracted a lot of attention and was fully resolved by Haxell and Szabo, and Szabo and Tardos in 2006. In this talk we discuss recent progress on the $r>t$ case and related extremal results on multipartite graphs.

Packing the largest trees in the tree packing conjecture

Series
Graph Theory Seminar
Time
Tuesday, November 7, 2023 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Richard MontgomeryUniversity of Warwick

The well-known tree packing conjecture of Gyárfás from 1976 says that, given any sequence of n trees in which the ith tree has i vertices, the trees can be packed edge-disjointly into the complete n-vertex graph. Packing even just the largest trees in such a sequence has proven difficult, with Bollobás drawing attention to this in 1995 by conjecturing that, for each k, if n is sufficiently large then the largest k trees in any such sequence can be packed. This has only been shown for k at most 5, by Zak, despite many partial results and much related work on the full tree packing conjecture.

I will discuss a result which proves Bollobás's conjecture by showing that, moreover, a linear number of the largest trees can be packed in the tree packing conjecture. This is joint work with Barnabás Janzer.

Pages