Seminars and Colloquia by Series

Multidimensional Stability of Planar Travelling Waves for Stochastically Perturbed Reaction-Diffusion Systems

Series
CDSNS Colloquium
Time
Friday, October 18, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Mark van den BoschLeiden University

Please Note: Talk is in-person; zoom link if needed: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

 

Travelling pulses and waves are a rich subset of feasible patterns in reaction-diffusion systems. Many have investigated their existence, stability, and other properties, but what happens if the deterministic dynamics is affected by random occurrences? How does the interplay between diffusion and noise influence the velocity, curvature, and stability of multidimensional patterns?

We consider reaction-diffusion systems with multiplicative noise on a spatial domain of dimension two or higher. The noise process is white in time, coloured in space, and invariant under translations; based on applications. Inspired by previous works on the real line, we establish the multidimensional stability of planar waves on a cylindrical domain on time scales that are exponentially long with respect to the noise strength. In the deterministic setting, multidimensional stability of planar waves on the whole space has been obtained, and we show to what extend we can do this in the stochastic case.

The metastability result above is achieved by means of a stochastic phase tracking mechanism that can be maintained over such long-time scales. The corresponding mild formulation of our problem features stochastic integrals with respect to anticipating integrands, which hence cannot be understood within the well-established setting of Itô-integrals. To circumvent this problem, we exploit and extend recently developed theory concerning forward integrals.

Multidimensional Stability of Planar Travelling Waves for Stochastically Perturbed Reaction-Diffusion Systems

Series
CDSNS Colloquium
Time
Friday, October 18, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Mark van den BoschLeiden University

Travelling pulses and waves are a rich subset of feasible patterns in reaction-diffusion systems. Many have investigated their existence, stability, and other properties, but what happens if the deterministic dynamics is affected by random occurrences? How does the interplay between diffusion and noise influence the velocity, curvature, and stability of multidimensional patterns?

 

We consider reaction-diffusion systems with multiplicative noise on a spatial domain of dimension two or higher. The noise process is white in time, coloured in space, and invariant under translations; based on applications. Inspired by previous works on the real line, we establish the multidimensional stability of planar waves on a cylindrical domain on time scales that are exponentially long with respect to the noise strength. In the deterministic setting, multidimensional stability of planar waves on the whole space has been obtained, and we show to what extend we can do this in the stochastic case.

 

The metastability result above is achieved by means of a stochastic phase tracking mechanism that can be maintained over such long-time scales. The corresponding mild formulation of our problem features stochastic integrals with respect to anticipating integrands, which hence cannot be understood within the well-established setting of Itô-integrals. To circumvent this problem, we exploit and extend recently developed theory concerning forward integrals.

Generic dynamics of the mean curvature flows

Series
CDSNS Colloquium
Time
Friday, October 11, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Jinxin XueTsinghua University

Please Note: Talk is in-person. Zoom-link available as well: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

The mean curvature flow is to evolve a hypersurface in Euclidean space using the mean curvatures at each point as the velocity field. The flow has good smoothing property, but also develops singularities. The singularities are modeled on an object called shrinkers, which give homothetic solutions to the flows. As there are infinitely many shrinkers that seem impossible to classify, it is natural to explore the idea of generic mean curvature flows that is to introduce a generic perturbation of the initial conditions. In this talk, we shall explain our work on this topic, including perturbing away nonspherical and noncylindrical shrinkers, and generic isolatedness of cylindrical singularities. The talk is based on a series of works jointly with Ao Sun.

Quantitative finiteness of hyperplanes in hybrid manifolds

Series
CDSNS Colloquium
Time
Friday, September 6, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Anthony SanchezUniversity of California - San Diego

The geometry of non-arithmetic hyperbolic manifolds is mysterious in spite of how plentiful they are. McMullen and Reid independently conjectured that such manifolds have only finitely many totally geodesic hyperplanes and their conjecture was recently settled by Bader-Fisher-Miller-Stover in dimensions larger than 3. Their works rely on superrigidity theorems and are not constructive. In this talk, we strengthen their result by proving a quantitative finiteness theorem for non-arithmetic hyperbolic manifolds that arise from a gluing construction of Gromov and Piatetski-Shapiro. Perhaps surprisingly, the proof relies on an effective density theorem for certain periodic orbits. The effective density theorem uses a number of ideas including Margulis functions, a restricted projection theorem, and an effective equidistribution result for measures that are nearly full dimensional. This is joint work with K. W. Ohm.

Sparse equidistribution in unipotent flows

Series
CDSNS Colloquium
Time
Friday, August 30, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 314
Speaker
Asaf KatzGeorgia Tech

Equidistribution problems, originating from the classical works of Kronecker, Hardy and Weyl about equidistribution of sequences mod 1, are of major interest in modern number theory. 

We will discuss how some of those problems relate to unipotent flows and present a conjecture by Margulis, Sarnak and Shah regarding an analogue of these results for the case of the horocyclic flow over a Riemann surface. Moreover, we provide evidence towards this conjecture by bounding from above the Hausdorff dimension of the set of points which do not equidistribute.

The talk will be accessible, no prior knowledge is assumed.

Dynamic Stability in Stochastic Gradient Descent

Series
CDSNS Colloquium
Time
Friday, May 24, 2024 - 15:30 for
Location
Skiles 254
Speaker
Dennis ChemnitzFU Berlin

Please Note: Streaming via Zoom: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

Most modern machine learning applications are based on overparameterized neural networks trained by variants of stochastic gradient descent. To explain the performance of these networks from a theoretical perspective (in particular the so-called "implicit bias"), it is necessary to understand the random dynamics of the optimization algorithms. Mathematically this amounts to the study of random dynamical systems with manifolds of equilibria. In this talk, I will give a brief introduction to machine learning theory and explain how almost-sure Lyapunov exponents and moment Lyapunov exponents can be used to characterize the set of possible limit points for stochastic gradient descent.

Validated enclosures of Fourier coefficients in Banach spaces of analytic functions

Series
CDSNS Colloquium
Time
Friday, May 10, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Jean-Philippe LessardMcGill University

Please Note: Streaming available via Zoom: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

This presentation introduces a methodology for generating computer-assisted proofs (CAPs) aimed at establishing the existence of solutions for nonlinear differential equations featuring non-polynomial analytic nonlinearities. Our approach combines the Fast Fourier Transform (FFT) algorithm with interval arithmetic and a Newton-Kantorovich argument to effectively construct CAPs. A key highlight is the rigorous management of Fourier coefficients of the nonlinear term Fourier series, achieved through insights from complex analysis and the Discrete Poisson Summation Formula. We demonstrate the effectiveness of our method through two illustrative examples: firstly, proving the existence of periodic orbits in the Mackey-Glass (delay) equation, and secondly, establishing the existence of periodic localized traveling waves in the two-dimensional suspension bridge equation.

This is joint work with Jan Bouwe van den Berg (VU Amsterdam, The Netherlands), Maxime Breden (École Polytechnique, France) and Jason D. Mireles James (Florida Atlantic University, USA)

Thermodynamic formalism for and hitting time statistics for random open dynamical systems

Series
CDSNS Colloquium
Time
Wednesday, May 8, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jason AtnipQueensland University

Please Note: In this talk we present some recent results on thermodynamic formalism for random open dynamical systems. In particular, we poke random holes in the phase space and prove the existence of unique equilibrium states on the set of surviving points as well as find the rate at which mass escapes through these holes. If we consider small holes, through a perturbative approach, we are able to make a connection to extreme value theory and hitting time statistics. Furthermore, we prove a Gumbel's law and show that the distribution of multiple returns to small holes is asymptotically compound Poisson distributed.

The role of symmetry in delay effects on stability

Series
CDSNS Colloquium
Time
Friday, May 3, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
John Ioannis StavroulakisGeorgia Institute of Technology

Please Note: Zoom link for streaming the talk: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

A conjecture of Buchanan and Lillo states that all nontrivial oscillatory solutions of
\begin{equation*}
x'(t)=p(t)x(t-\tau(t)),
\end{equation*}
 with $0\leq p(t)\leq 1,0\leq \tau(t)\leq 2.75+\ln2 \approx 3.44$ tend to a known function $\varpi$, which is antiperiodic:
 \begin{equation*}
 \varpi(t+T/2)\equiv - \varpi(t)
 \end{equation*}
 where $T$ is its minimal period. We discuss recent developments on this question, focusing on the periodic solutions characterizing the threshold case. We consider the case of positive feedback ($0\leq p(t)\leq 1$) with $\sup\tau(t)= 2.75+\ln2$, the well-known $3/2$-criterion corresponding to negative feedback ($0\leq -p(t)\leq 1$) with $\sup\tau(t)=1.5$, as well as higher order equations. 

 We investigate the behavior of the threshold periodic solutions under perturbation together with the symmetry (antiperiodicity) which characterizes them. This problem is set within the broader background of delay effects on stability for autonomous and nonautonomous equations, taking into account the fundamental relation between oscillation speed and dynamics of delay equations. We highlight the crucial role of symmetry in both the intuitions behind this vein of research, as well as the relevant combinatorial-variational problems.
 

Constructive proofs of existence in differential equations on R^n

Series
CDSNS Colloquium
Time
Friday, April 26, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
Skiles 254
Speaker
Matthieu CadiotMcGill University

Please Note: Zoom link to attend remotely: https://gatech.zoom.us/j/91390791493?pwd=QnpaWHNEOHZTVXlZSXFkYTJ0b0Q0UT09

In this talk I will present a computer-assisted method to study solutions vanishing at infinity in differential equations on R^n. Such solutions arise naturally in various models, in the form of traveling waves or localized patterns for instance, and involve multiple challenges to address both on the numerical and on the analytical side. Using spectral techniques, I will explain how Fourier series can serve as an approximation of the solution as well as an efficient mean for the construction of a fixed-point operator for the proof. To illustrate the method, I will present applications to the constructive proof of localized patterns in the 2D Swift-Hohenberg equation and in the Gray-Scott model. The method extends to non-local equations and proofs of solitary travelling waves in the (capillary-gravity) Whitham equation will be exposed.

Pages