Seminars and Colloquia by Series

Hilbert's Tenth Problem and Generalizations

Series
Algebra Student Seminar
Time
Friday, March 18, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Ian LewisGeorgia Tech
Hilbert's Tenth Problem asks whether there exists an algorithm to determine whether an arbitrary polynomial with integer coefficients has a solution or not. This problem was resolved by Matiyasevich building of the work in of Robinson, Davis, and Putnam in the 70s. We will give an overview of how this problem was resolved and the current status of various generalizations.
 

Nonnegativity and Real-Rootedness

Series
Algebra Student Seminar
Time
Friday, March 11, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 or ONLINE
Speaker
Kevin ShuGeorgia Tech

There are many interesting classes of polynomials in real algebraic geometry that are of modern interest. A polynomial is nonnegative if it only takes nonnegative values on R^n. A univariate polynomial is real-rooted if all of its complex roots are real, and a hyperbolic polynomial is a multivariate generalization of a real-rooted polynomial. We will discuss connections between these two classes of polynomials. In particular, we will discuss recent ideas of Saunderson giving new ways of proving that a polynomial is nonnegative beyond showing that it is sum-of-squares.

Teams link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1646885419648?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Nonnegative symmetric polynomials and symmetric sums of squares at the limit.

Series
Algebra Student Seminar
Time
Friday, March 4, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Jose AcevedoGeorgia Tech

Restricting to symmetric homogeneous polynomials of degree 2d we compare the cones of nonnegative polynomials with the cone of sums of squares when the number of variables goes to infinity. We consider two natural notions of limit and for each we completely characterize the degrees for which the limit cones are equal. To distinguish these limit cones we tropicalize their duals, which we compute via tropicalizing spectrahedra and tropical convexity. This gives us convex polyhedral cones which we can completely describe and from them obtain explicit examples of nonnegative symmetric polynomials that are not sums of squares (in some cases for any number >=4 of variables).

This is joint work with Grigoriy Blekherman, Sebastian Debus, and Cordian Riener.

 

Microsoft Teams Link

Algebra Student Seminar homepage

Tropical and algebraic divisors and projective embeddings

Series
Algebra Student Seminar
Time
Friday, February 25, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Trevor GunnGeorgia Tech

We will review how divisors on abstract algebraic curves are connected with projective embeddings and then see how that language translates to tropical curves and tropicalization. This talk aims to explain some of the connections between tropical curves and algebraic curves that was not discussed during the seminar on tropical Brill-Noether theory.

Microsoft Teams Link

Algebra Student Seminar homepage

Braided Monoidal Categories and Fusion Categories

Series
Algebra Student Seminar
Time
Friday, February 18, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 or ONLINE
Speaker
Akash NarayananGeorgia Tech

We introduce the notion of braided monoidal categories and fusion categories, which are one way of reframing algebraic structures in a categorical context. After discussing various examples and analogies with the theory of finite groups, we build up to a classification of pointed fusion categories.

Link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1644880596204?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Hyperbolic generalization of linear algebra

Series
Algebra Student Seminar
Time
Friday, February 4, 2022 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006, or ONLINE
Speaker
Shengding SunGeorgia Tech

We will introduce the machinery of hyperbolic polynomial, and see how it can help us generalize classical linear algebra theorems and inequalities on symmetric matrices, including Hadamard-Fischer inequality, Koteljanskii's inequality and Schur-Horn theorem (last one is conjectured but not proved). Joint work with Greg Blekherman, Mario Kummer, Raman Sanyal and Kevin Shu.

 

Team link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1643388106130?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d

Finite Automata and Transfer Matrices

Series
Algebra Student Seminar
Time
Friday, January 28, 2022 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 and Teams
Speaker
Trevor GunnGeorgia Tech

This talk is a primer on solving certain kinds of counting problems through regular languages, finite automata and transfer matrices. Example problems: count the number of binary strings that contain "0110", count the number of binary strings that contain 0, 1, 2,... copies of "0110," a derivation of the negative binomial distribution function.

The only requirements for this talk is a basic familiarity with directed graphs, matrices and generating functions.

Teams Link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1643050072413?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%22dc6c6c03-84d2-497a-95c0-d85af9cbcf28%22%7d

Apolarity for quadratic forms

Series
Algebra Student Seminar
Time
Friday, November 19, 2021 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jaewoo JungGeorgia Tech

Recall that, for a variety $X$ in a projective space $\mathbb{P}^d$, the $X$-rank of a point $p\in \mathbb{P}^d$ is the least number of points of $X$ whose span contains the point $p$. Studies about $X$-ranks include some well-known and important results about various tensor ranks. For example, 

  • the rank of tensors is the rank with respect to Segre varieties,
  • the rank of symmetric tensors, i.e. Waring rank, is the rank with respect to Veronese embeddings, and
  • the rank of anti-symmetric tensors is the rank with respect to Grassmannians in its Plücker embedding.  

In this talk, we focus on ranks with respect to Veronese embeddings of a projective line $\mathbb{P}^1$. i.e. symmetric tensor ranks of binary forms. We will discuss how to associate points in $\mathbb{P}^d$ with binary forms and I will introduce apolarity for binary forms which gives an effective method to study Waring ranks of binary forms. We will discuss various ranks on the Veronese embedding and some results on the ranks.

Introduction to Diophantine Approximation with Applications to Arithmetic Geometry

Series
Algebra Student Seminar
Time
Friday, November 5, 2021 - 10:00 for 1 hour (actually 50 minutes)
Location
Skile 005
Speaker
Ian LewisGeorgia Tech

One question addressed in the field of Diophantine approximation is precisely quantifying how many "good" approximations an algebraic number has by rational numbers. This is answered most soundly by a 1955 theorem of Klaus Roth. In this talk, I will cover this theorem, some related results and hint at how it can be used to bound the number of rational solutions to curves.

Representation of Delta-matroids and the spinor varieties

Series
Algebra Student Seminar
Time
Friday, October 29, 2021 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tong JinGeorgia Tech

Delta-matroids are natural generalizations of matroids in which we replace each difference operator by the symmetric difference operator in the basis exchange axiom. I will briefly introduce (even) Delta-matroids and their representability. I will also discuss how they are related to the spinor varieties. 

Pages