Hilbert's Tenth Problem and Generalizations
- Series
- Algebra Student Seminar
- Time
- Friday, March 18, 2022 - 11:00 for 1 hour (actually 50 minutes)
- Location
- Skiles 006 and Teams
- Speaker
- Ian Lewis – Georgia Tech
There are many interesting classes of polynomials in real algebraic geometry that are of modern interest. A polynomial is nonnegative if it only takes nonnegative values on R^n. A univariate polynomial is real-rooted if all of its complex roots are real, and a hyperbolic polynomial is a multivariate generalization of a real-rooted polynomial. We will discuss connections between these two classes of polynomials. In particular, we will discuss recent ideas of Saunderson giving new ways of proving that a polynomial is nonnegative beyond showing that it is sum-of-squares.
Teams link: https://teams.microsoft.com/l/meetup-join/19%3a3a9d7f9d1fca4f5b991b4029b09c69a1%40thread.tacv2/1646885419648?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2206706002-23ff-4989-8721-b078835bae91%22%7d
Restricting to symmetric homogeneous polynomials of degree 2d we compare the cones of nonnegative polynomials with the cone of sums of squares when the number of variables goes to infinity. We consider two natural notions of limit and for each we completely characterize the degrees for which the limit cones are equal. To distinguish these limit cones we tropicalize their duals, which we compute via tropicalizing spectrahedra and tropical convexity. This gives us convex polyhedral cones which we can completely describe and from them obtain explicit examples of nonnegative symmetric polynomials that are not sums of squares (in some cases for any number >=4 of variables).
This is joint work with Grigoriy Blekherman, Sebastian Debus, and Cordian Riener.
We will review how divisors on abstract algebraic curves are connected with projective embeddings and then see how that language translates to tropical curves and tropicalization. This talk aims to explain some of the connections between tropical curves and algebraic curves that was not discussed during the seminar on tropical Brill-Noether theory.
We introduce the notion of braided monoidal categories and fusion categories, which are one way of reframing algebraic structures in a categorical context. After discussing various examples and analogies with the theory of finite groups, we build up to a classification of pointed fusion categories.
We will introduce the machinery of hyperbolic polynomial, and see how it can help us generalize classical linear algebra theorems and inequalities on symmetric matrices, including Hadamard-Fischer inequality, Koteljanskii's inequality and Schur-Horn theorem (last one is conjectured but not proved). Joint work with Greg Blekherman, Mario Kummer, Raman Sanyal and Kevin Shu.
This talk is a primer on solving certain kinds of counting problems through regular languages, finite automata and transfer matrices. Example problems: count the number of binary strings that contain "0110", count the number of binary strings that contain 0, 1, 2,... copies of "0110," a derivation of the negative binomial distribution function.
The only requirements for this talk is a basic familiarity with directed graphs, matrices and generating functions.
Recall that, for a variety $X$ in a projective space $\mathbb{P}^d$, the $X$-rank of a point $p\in \mathbb{P}^d$ is the least number of points of $X$ whose span contains the point $p$. Studies about $X$-ranks include some well-known and important results about various tensor ranks. For example,
In this talk, we focus on ranks with respect to Veronese embeddings of a projective line $\mathbb{P}^1$. i.e. symmetric tensor ranks of binary forms. We will discuss how to associate points in $\mathbb{P}^d$ with binary forms and I will introduce apolarity for binary forms which gives an effective method to study Waring ranks of binary forms. We will discuss various ranks on the Veronese embedding and some results on the ranks.
One question addressed in the field of Diophantine approximation is precisely quantifying how many "good" approximations an algebraic number has by rational numbers. This is answered most soundly by a 1955 theorem of Klaus Roth. In this talk, I will cover this theorem, some related results and hint at how it can be used to bound the number of rational solutions to curves.
Delta-matroids are natural generalizations of matroids in which we replace each difference operator by the symmetric difference operator in the basis exchange axiom. I will briefly introduce (even) Delta-matroids and their representability. I will also discuss how they are related to the spinor varieties.