Seminars and Colloquia by Series

Fractional Ginzburg-Landau equations and harmonic maps

Series
PDE Seminar
Time
Tuesday, February 5, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Yannick SireUniversite Paul Cezanne d'Aix-Marseille III
I will describe a joint work with Vincent Millot (Paris 7) where we investigate the singular limit of a fractional GL equation towards the so-called boundary harmonic maps.

Entropy solutions of the initial-boundary value problems for degenerate parabolic-hyperbolic equations

Series
PDE Seminar
Time
Tuesday, January 29, 2013 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Yachu LiShanghai Jiao Tong University
We study the Dirichlet and Neumann type initial-boundary value problems for strongly degenerate parabolic-hyperbolic equations. We suggest the notions of entropy solutions for these problems and establish the uniqueness of entropy solutions. The existence of entropy solutions is also discussed(joint work with Yuxi Hu and Qin Wang).

Hamilton-Jacobi-Bellman equations for the optimal control of dynamical systems with delay

Series
PDE Seminar
Time
Tuesday, January 8, 2013 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Fausto GozziLUISS University, Rome, Italy
In this talk we first present some applied examples (coming from Economics and Finance) of Optimal Control Problems for Dynamical Systems with Delay (deterministic and stochastic). To treat such problems with the so called Dynamic Programming Approach one has to study a class of infinite dimensional HJB equations for which the existing theory does not apply due to their specific features (presence of state constraints, presence of first order differential operators in the state equation, possible unboundedness of the control operator). We will present some results on the existence of regular solutions for such equations and on existence of optimal control in feedback form.

Quasi-periodic solutions for some ill-posed Hamiltonian evolution equations

Series
PDE Seminar
Time
Tuesday, November 20, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rafael de la LlaveGeorgia Tech
We prove an a-posteriori KAM theorem which applies to some ill-posed Hamiltonian equations. We show that given an approximate solution of an invariance equation which also satisfies some non-degeneracy conditions, there is a true solution nearby. Furthermore, the solution is "whiskered" in the sense that it has stable and unstable directions. We do not assume that the equation defines an evolution equation. Some examples are the Boussinesq equation (and system) and the elliptic equations in cylindrical domains. This is joint work with Y. Sire. Related work with E. Fontich and Y. Sire.

Regularity of the flow map for the gravity-capillary problem

Series
PDE Seminar
Time
Tuesday, November 13, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ming ChenUniversity of Pittsburgh
We prove via explicitly constructed initial data that solutionsto the gravity-capillary wave system in R^3 representing a 2d air-waterinterface immediately fail to be C^3 with respect to the initial data ifthe initial (h_0, \psi_0) \in H^{s + 1/2} \times H^s for s<3, where h isthe free surface and \psi is the velocity potential.

Compressible Navier-Stokes equations with temperature dependent dissipation.

Series
PDE Seminar
Time
Tuesday, November 6, 2012 - 15:01 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Ronghua PanGeorgia Tech
From its physical origin, the viscosity and heat conductivity in compressible fluids depend on absolute temperature through power laws. The mathematical theory on the well-posedness and regularity on this setting is widely open. I will report some recent progress made on this direction, with emphasis on the lower bound of temperature, and global existence of solutions in one or multiple dimensions. The relation between thermodynamics laws and Navier-Stokes equations will also be discussed. This talk is based on joint works with Weizhe Zhang.

Nonlocal maximum principles for active scalars

Series
PDE Seminar
Time
Tuesday, October 23, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alexander KiselevDepartment of Mathematics, University of Wisconsin, Madison
Active scalars appear in many problems of fluid dynamics. The most common examples of active scalar equations are 2D Euler, Burgers, and 2D surface quasi-geostrophic (SQG) equations. Many questions about regularity and properties of solutions of these equations remain open. I will discuss the recently introduced idea of nonlocal maximum principle, which helped prove global regularity of solutions to the critical SQG equation. I will describe some further recent developments on regularity and blowup of solutions to active scalar equations.

Energetics of the Euler equation and a self-similar blow-up

Series
PDE Seminar
Time
Tuesday, October 9, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Roman ShvydkoyUniversity of Illinois at Chicago
The existence of self-similar blow-up for the viscous incompressible fluids was a classical question settled in the seminal of works of Necas, et al and Tsai in the 90'. The corresponding scenario for the inviscid Euler equations has not received as much attention, yet it appears in many numerical simulations, for example those based on vortex filament models of Kida's high symmetry flows. The case of a homogeneous self-similar profile is especially interesting due to its relevance to other theoretical questions such the Onsager conjecture or existence of Landau type solutions. In this talk we give an account of recent studies demonstrating that a self-similar blow-up is unsustainable the Euler system under various weak decay assumptions on the profile. We will also talk about general energetics of the Euler system that, in part, is responsible for such exclusion results.

Positive Equilibrium Solutions in Structured Population Dynamics

Series
PDE Seminar
Time
Monday, October 8, 2012 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christoph WalkerUniversity of Hannover, Germany
The talk focuses on positive equilibrium (i.e. time-independent)solutionsto mathematical models for the dynamics of populations structured by ageand spatial position. This leads to the study of quasilinear parabolicequations with nonlocal and possibly nonlinear initial conditions. Weshallsee in an abstract functional analytic framework how bifurcationtechniquesmay be combined with optimal parabolic regularity theory to establishtheexistence of positive solutions. As an application of these results wegivea description of the geometry of coexistence states in a two-parameterpredator-prey model.

An Invitation to the Millennium Prize Problem for the Navier-Stokes Equation and its Probabilistic Counterpart

Series
PDE Seminar
Time
Tuesday, October 2, 2012 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
S. S. SritharanNaval Postgraduate School, Monterey, California
In this talk we will give a very elementary explanation of issues associated with the unique global solvability of three dimensional Navier-Stokes equation and then discuss various modifications of the classical system for which the unique solvability is resolved. We then discuss some of the fascinating issues associated with the stochastic Navier-Stokes equations such as Gaussian & Levy Noise, large deviations and invariant measures.

Pages