- You are here:
- GT Home
- Home
- News & Events

Series: PDE Seminar

Series: PDE Seminar

Series: PDE Seminar

The boundary value and mixed value problems for linear and
nonlinear degenerate abstract elliptic and parabolic equations are
studied. Linear problems involve some parameters. The uniform
L_{p}-separability properties of linear problems and the optimal
regularity results for nonlinear problems are obtained. The equations
include linear operators defined in Banach spaces, in which by choosing
the spaces and operators we can obtain numerous classes of problems for
singular degenerate differential equations which occur in a wide variety
of physical systems.
In this talk, the classes of boundary value problems (BVPs) and
mixed value problems (MVPs) for regular and singular degenerate
differential operator equations (DOEs) are considered. The main
objective of the present talk is to discuss the maximal regularity
properties of the BVP for the degenerate abstract elliptic and parabolic
equation
We prove that for f∈L_{p} the elliptic problem has a unique
solution u∈ W_{p,α}² satisfying the uniform coercive estimate
∑_{k=1}ⁿ∑_{i=0}²|λ|^{1-(i/2)}‖((∂^{[i]}u)/(∂x_{k}^{i}))‖_{L_{p}(G;E)}+‖Au‖_{L_{p}(G;E)}≤C‖f‖_{L_{p}(G;E)}
where L_{p}=L_{p}(G;E) denote E-valued Lebesque spaces for p∈(1,∞) and
W_{p,α}² is an E-valued Sobolev-Lions type weighted space that to be
defined later. We also prove that the differential operator generated by
this elliptic problem is R-positive and also is a generator of an
analytic semigroup in L_{p}. Then we show the L_{p}-well-posedness with
p=(p, p₁) and uniform Strichartz type estimate for solution of MVP for
the corresponding degenerate parabolic problem. This fact is used to
obtain the existence and uniqueness of maximal regular solution of the
MVP for the nonlinear parabolic equation.

Series: PDE Seminar

The ground state solution to the nonlinear Schrödinger equation (NLS) is a global, non-scattering solution that often provides a threshold between scattering and blowup. In this talk, we will discuss new, simplified proofs of scattering below the ground state threshold (joint with B. Dodson) in both the radial and non-radial settings.

Series: PDE Seminar

We prove an abstract theorem giving a $t^\epsilon$ bound for any $\epsilon> 0$ on the growth of the Sobolev norms in some abstract linear Schrödinger equations. The abstract theorem is applied to nonresonant Harmonic oscillators in R^d. The proof is obtained by conjugating the system to some normal form in which the perturbation is a smoothing operator. Finally, time permitting, we will show how to construct a perturbation of the harmonic oscillator which provokes growth of Sobolev norms.

Series: PDE Seminar

Black holes are predicted by Einstein's theory of general relativity, and now we have ample observational evidence for their existence. However theoretically there are many unanswered questions about how black holes come into being. In this talk, with tools from hyperbolic PDE, quasilinear elliptic equations, geometric analysis and dynamical systems, we will prove that, through a nonlinear focusing effect, initially low-amplitude and diffused gravitational waves can give birth to a black hole region in our universe. This result extends the 1965 Penrose’s singularity theorem and it also proves a conjecture of Ashtekar on black-hole thermodynamics. Open problems and new directions will also be discussed.

Series: PDE Seminar

This is a joint work with Piermarco Cannarsa and Wei Cheng. We study the properties of the set S of non-differentiable points of viscosity solutions of the Hamilton-Jacobi equation, for a Tonelli Hamiltonian. The main surprise is the fact that this set is locally arc connected—it is even locally contractible. This last property is far from generic in the class of semi-concave functions. We also “identify” the connected components of this set S. This work relies on the idea of Cannarsa and Cheng to use the positive Lax-Oleinik operator to construct a global propagation of singularities (without necessarily obtaining uniqueness of the propagation).

Series: PDE Seminar

In a recent work Sideris constructed a finite-parameter family of compactly supported affine solutions to the free boundary compressible Euler equations satisfying the physical vacuum condition. The support of these solutions expands at a linear rate in time. We show that if the adiabatic exponent gamma belongs to the interval(1, 5/3] then these affine motions are globally-in-time nonlinearly stable. If time permits we shall also discuss several classes of global solutions to the compressible Euler-Poisson system. This is a joint work with Juhi Jang.

Series: PDE Seminar

Geometric tangential analysis refers to a constructive systematic approach based on the concept that a problem which enjoys greater regularity can be “tangentially" accessed by certain classes of PDEs. By means of iterative arguments, the method then imports regularity, properly corrected through the path used to access the tangential equation, to the original class. The roots of this idea likely go back to the foundation of De Giorgi’s geometric measure theory of minimal surfaces, and accordingly, it is present in the development of the contemporary theory of free boundary problems. This set of ideas also plays a decisive role in Caffarelli’s work on fully non-linear elliptic PDEs, and subsequently in his studies on Monge-Ampere equations from the 1990’s. In recent years, however, geometric tangential methods have been significantly enhanced, amplifying their range of applications and providing a more user-friendly platform for advancing these endeavors. In this talk, I will discuss some fundamental ideas supporting (modern) geometric tangential methods and will exemplify their power through select examples.

Series: PDE Seminar

The aim of talk is threefold. First, we solve the cubic nonlinear Schr\"odinger equation on the real line with initial data a sum of Dirac deltas. Secondly, we show a Talbot effect for the same equation. Finally, we prove an intermittency phenomena for a class of singular solutions of the binormal flow, that is used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. If time permits some questions concerning the transfer of energy and momentum will be also considered.