Seminars and Colloquia by Series

Series: PDE Seminar
Tuesday, October 9, 2018 - 15:05 , Location: Skiles 006 , Marc Sedjro , African Institute for Mathematical Sciences, Tanzania , Organizer: Yao Yao
Series: PDE Seminar
Tuesday, September 25, 2018 - 15:05 , Location: Skiles 006 , William Feldman , University of Chicago , feldman@math.uchicago.edu , Organizer: Yao Yao
Series: PDE Seminar
Tuesday, August 21, 2018 - 15:00 , Location: Skiles 006 , Professor Veli Shakhmurov , Okan University , veli.sahmurov@okan.edu.tr , Organizer: Ronghua Pan
The boundary value and mixed value problems for linear and nonlinear degenerate abstract elliptic and parabolic equations are studied. Linear problems involve some parameters. The uniform L_{p}-separability properties of linear problems and the optimal regularity results for nonlinear problems are obtained. The equations include linear operators defined in Banach spaces, in which by choosing the spaces and operators we can obtain numerous classes of problems for singular degenerate differential equations which occur in a wide variety of physical systems.     In this talk, the classes of boundary value problems (BVPs) and mixed value problems (MVPs) for regular and singular degenerate differential operator equations (DOEs) are considered. The main objective of the present talk is to discuss the maximal regularity properties of the BVP for the degenerate abstract elliptic and parabolic equation     We prove that for f∈L_{p} the elliptic problem has a unique solution u∈ W_{p,α}² satisfying the uniform coercive estimate ∑_{k=1}ⁿ∑_{i=0}²|λ|^{1-(i/2)}‖((∂^{[i]}u)/(∂x_{k}^{i}))‖_{L_{p}(G;E)}+‖Au‖_{L_{p}(G;E)}≤C‖f‖_{L_{p}(G;E)} where L_{p}=L_{p}(G;E) denote E-valued Lebesque spaces for p∈(1,∞) and W_{p,α}² is an E-valued Sobolev-Lions type weighted space that to be defined later. We also prove that the differential operator generated by this elliptic problem is R-positive and also is a generator of an analytic semigroup in L_{p}. Then we show the L_{p}-well-posedness with p=(p, p₁) and uniform Strichartz type estimate for solution of MVP for the corresponding degenerate parabolic problem. This fact is used to obtain the existence and uniqueness of  maximal regular solution of the MVP for the nonlinear parabolic equation.
Series: PDE Seminar
Thursday, May 3, 2018 - 15:00 , Location: Skiles 005 , Jason Murphy , Missouri University of Science and Technology , jason.murphy@mst.edu , Organizer:
The ground state solution to the nonlinear Schrödinger equation (NLS) is a global, non-scattering solution that often provides a threshold between scattering and blowup.  In this talk, we will discuss new, simplified proofs of scattering below the ground state threshold (joint with B. Dodson) in both the radial and non-radial settings.
Series: PDE Seminar
Thursday, April 26, 2018 - 15:00 , Location: Skiles 257 , Alberto Maspero , SISSA , alberto.maspero@sissa.it , Organizer: Yao Yao
We prove an abstract theorem giving a $t^\epsilon$ bound for any $\epsilon> 0$ on the growth of the Sobolev norms in some abstract linear Schrödinger equations. The abstract theorem is applied to  nonresonant Harmonic oscillators in R^d. The proof is obtained by conjugating the system to some normal form in which the perturbation is a smoothing operator. Finally, time permitting, we will show how to construct a perturbation of the harmonic oscillator which provokes growth of Sobolev norms.
Series: PDE Seminar
Tuesday, February 27, 2018 - 15:00 , Location: Skiles 006 , Xinliang An , University of Toronto , xinliang.an@utoronto.ca , Organizer: Yao Yao
Black holes are predicted by Einstein's theory of general relativity, and now we have ample observational evidence for their existence. However theoretically there are many unanswered questions about how black holes come into being. In this talk, with tools from hyperbolic PDE, quasilinear elliptic equations, geometric analysis and dynamical systems, we will prove that, through a nonlinear focusing effect, initially low-amplitude and diffused gravitational waves can give birth to a black hole region in our universe. This result extends the 1965 Penrose’s singularity theorem and it also proves a conjecture of Ashtekar on black-hole thermodynamics. Open problems and new directions will also be discussed.
Series: PDE Seminar
Tuesday, February 6, 2018 - 15:00 , Location: Skiles 006 , Albert Fathi , Georgia Tech , afathi30@gatech.edu , Organizer: Yao Yao
This is a joint work with Piermarco Cannarsa and Wei Cheng. We study the properties of the set S of non-differentiable points of viscosity solutions of the Hamilton-Jacobi equation, for a Tonelli Hamiltonian. The main surprise is the fact that this set is locally arc connected—it is even locally contractible. This last property is far from generic in the class of semi-concave functions. We also “identify” the connected components of this set S. This work relies on the idea of Cannarsa and Cheng to use the positive Lax-Oleinik operator to construct a global propagation of singularities (without necessarily obtaining uniqueness of the propagation).
Series: PDE Seminar
Wednesday, December 13, 2017 - 15:00 , Location: Skiles 005 , Mahir Hadžić , King's College London , mahir.hadzic@kcl.ac.uk , Organizer: Yao Yao
In a recent work Sideris constructed a finite-parameter family of compactly supported affine solutions to the free boundary compressible Euler equations satisfying the physical vacuum condition.  The support of these solutions expands at a linear rate in time. We show that if the adiabatic exponent gamma belongs to the interval(1, 5/3] then these affine motions are globally-in-time nonlinearly stable. If time permits we shall also discuss several classes of global solutions to the compressible Euler-Poisson system. This is a joint work with Juhi Jang.
Series: PDE Seminar
Tuesday, November 28, 2017 - 15:00 , Location: Skiles 006 , Eduardo Teixeira , University of Central Florida , eduardo.teixeira@ucf.edu , Organizer: Yao Yao
Geometric tangential analysis refers to a constructive systematic approach based on the concept that a problem which enjoys greater regularity can be “tangentially" accessed by certain classes of PDEs. By means of iterative arguments, the method then imports regularity, properly corrected through the path used to access the tangential equation, to the original class. The roots of this idea likely go back to the foundation of De Giorgi’s geometric measure theory of minimal surfaces, and accordingly, it is present in the development of the contemporary theory of free boundary problems. This set of ideas also plays a decisive role in Caffarelli’s work on fully non-linear elliptic PDEs, and subsequently in his studies on Monge-Ampere equations from the 1990’s. In recent years, however, geometric tangential methods have been significantly enhanced, amplifying their range of applications and providing a more user-friendly platform for advancing these endeavors. In this talk, I will discuss some fundamental ideas supporting (modern) geometric tangential methods and will exemplify their power through select examples.
Series: PDE Seminar
Tuesday, November 21, 2017 - 15:00 , Location: Skiles 006 , Luis Vega , University of the Basque Country UPV/EHU , luis.vega@ehu.es , Organizer: Yao Yao
The aim of talk is threefold. First, we solve the cubic nonlinear Schr\"odinger equation on the real line with initial data a sum of Dirac deltas. Secondly, we show a Talbot effect for the same equation. Finally, we prove an intermittency phenomena for a class of singular solutions of the binormal flow, that is used as a model for the vortex filaments dynamics in 3-D fluids and superfluids. If time permits some questions concerning the transfer of energy and momentum will be also considered.

Pages