Seminars and Colloquia by Series

Fourier Galerkin approximation of mean field control problems

Series
PDE Seminar
Time
Tuesday, September 3, 2024 - 15:30 for 1 hour (actually 50 minutes)
Location
ONLINE: https://gatech.zoom.us/j/92007172636?pwd=intwy0PZMdqJX5LUAbseRjy3T9MehD.1
Speaker
Mattia MartiniLaboratoire J.A. Dieudonné, Université Côte d'Azur
Over the past twenty years, mean field control theory has been developed to study cooperative games between weakly interacting agents (particles).  The limiting formulation of a (stochastic) mean field control problem, arising as the number of agents approaches infinity, is a control problem for trajectories with values in the space of probability measures. The goal of this talk is to introduce a finite dimensional approximation of the solution to a mean field control problem set on the $d$-dimensional torus.  Our approximation is obtained by means of a Fourier-Galerkin method, the main principle of which is to truncate the Fourier expansion of probability measures. 
 
First, we prove that the Fourier-Galerkin method induces a new finite-dimensional control problem with trajectories in the space of probability measures with a finite number of Fourier coefficients. Subsequently, our main result asserts that, whenever the cost functionals are smooth and convex, the optimal control, trajectory, and value function from the approximating problem converge to their counterparts in the original mean field control problem. Noticeably, we show that our method yields a polynomial convergence rate directly proportional to the data's regularity. This convergence rate is faster than the one achieved by the usual particles methods available in the literature, offering a more efficient alternative. Furthermore, our technique also provides an explicit method for constructing an approximate optimal control along with its corresponding trajectory. This talk is based on joint work with François Delarue.

Differential Equations for Continuous-Time Deep Learning

Series
PDE Seminar
Time
Friday, April 19, 2024 - 15:00 for 1 hour (actually 50 minutes)
Location
CSIP Library (Room 5126), 5th floor, Centergy one
Speaker
Dr.Lars RuthottoResearch Associate Professor in the Department of Mathematics and the Department of Computer Science at Emory University

In this talk, we introduce and survey continuous-time deep learning approaches based on neural ordinary differential equations (neural ODEs) arising in supervised learning, generative modeling, and numerical solution of high-dimensional optimal control problems. We will highlight theoretical advantages and numerical benefits of neural ODEs in deep learning and their use to solve otherwise intractable PDE problems.

Self-similar singular solutions in gas dynamics

Series
PDE Seminar
Time
Tuesday, April 9, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Juhi JangUniversity of Southern California

In this talk, we will discuss mathematical construction of self-similar solutions exhibiting implosion arising in gas dynamics and gaseous stars, with focus on self-similar converging-diverging shock wave solutions to the non-isentropic Euler equations and imploding solutions to the Euler-Poisson equations describing gravitational collapse. The talk is based on joint works with Guo, Hadzic, Liu and Schrecker. 

Gradient Elastic Surfaces and the Elimination of Fracture Singularities in 3D Bodies

Series
PDE Seminar
Time
Tuesday, March 26, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Casey Rodriguez University of North Carolina at Chapel Hill

In this talk, we give an overview of recent work in gradient elasticity.  We first give a friendly introduction to gradient elasticity—a mathematical framework for understanding three-dimensional bodies that do not dissipate a form of energy during deformation. Compared to classical elasticity theory, gradient elasticity incorporates higher spatial derivatives that encode certain microstructural information and become significant at small spatial scales. We then discuss a recently introduced theory of three-dimensional Green-elastic bodies containing gradient elastic material boundary surfaces. We then indicate how the resulting model successfully eliminates pathological singularities inherent in classical linear elastic fracture mechanics, presenting a new and geometric alternative theory of fracture.

Pages