TBA by Christian Keller
- Series
- PDE Seminar
- Time
- Tuesday, November 12, 2024 - 15:30 for 1 hour (actually 50 minutes)
- Location
- Skiles 006
- Speaker
- Christian Keller – University of Central Florida – christian.keller@ucf.edu
TBA
TBA
In this talk, we introduce and survey continuous-time deep learning approaches based on neural ordinary differential equations (neural ODEs) arising in supervised learning, generative modeling, and numerical solution of high-dimensional optimal control problems. We will highlight theoretical advantages and numerical benefits of neural ODEs in deep learning and their use to solve otherwise intractable PDE problems.
In this talk, we will discuss mathematical construction of self-similar solutions exhibiting implosion arising in gas dynamics and gaseous stars, with focus on self-similar converging-diverging shock wave solutions to the non-isentropic Euler equations and imploding solutions to the Euler-Poisson equations describing gravitational collapse. The talk is based on joint works with Guo, Hadzic, Liu and Schrecker.
In this talk, we give an overview of recent work in gradient elasticity. We first give a friendly introduction to gradient elasticity—a mathematical framework for understanding three-dimensional bodies that do not dissipate a form of energy during deformation. Compared to classical elasticity theory, gradient elasticity incorporates higher spatial derivatives that encode certain microstructural information and become significant at small spatial scales. We then discuss a recently introduced theory of three-dimensional Green-elastic bodies containing gradient elastic material boundary surfaces. We then indicate how the resulting model successfully eliminates pathological singularities inherent in classical linear elastic fracture mechanics, presenting a new and geometric alternative theory of fracture.