Seminars and Colloquia by Series

Domain Decompostion Methods for Stokes Equations

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, March 25, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Junping WangNSF
This talk will first review domain decomposition methods for second order elliptic equations, which should be accessible to graduate students. The second part of the talk will deal with possible extensions to the Stokes equation when discretized by finite element methods. In particular, we shall point out the difficulties in such a generalization, and then discuss ways to overcome the difficulties.

Hopf Bifurcation in Age Structured Models with Application to Influenza A Drift

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 23, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Shigui RuanUniversity of Miami
Understanding the seasonal/periodic reoccurrence of influenza will be very helpful in designing successful vaccine programs and introducing public health interventions. However, the reasons for seasonal/periodic influenza epidemics are still not clear even though various explanations have been proposed. In this talk, we present an age-structured type evolutionary epidemiological model of influenza A drift, in which the susceptible class is continually replenished because the pathogen changes genetically and immunologically from one epidemic to the next, causing previously immune hosts to become susceptible. Applying our recent established center manifold theory for semilinear equations with non-dense domain, we show that Hopf bifurcation occurs in the model. This demonstrates that the age-structured type evolutionary epidemiological model of influenza A drift has an intrinsic tendency to oscillate due to the evolutionary and/or immunological changes of the influenza viruses. (based on joint work with Pierre Magal).

Recent Progresses and Challenges in High-Order Unstructured Grid Methods in CFD

Series
Applied and Computational Mathematics Seminar
Time
Monday, March 9, 2009 - 13:05 for 1.5 hours (actually 80 minutes)
Location
Skiles 255
Speaker
Zhi J. WangAerospace Engineering, Iowa State University
The current breakthrough in computational fluid dynamics (CFD) is the emergence of unstructured grid based high-order (order > 2) methods. The leader is arguably the discontinuous Galerkin method, amongst several other methods including the multi-domain spectral, spectral volume (SV), and spectral difference (SD) methods. All these methods possess the following properties: k-exactness on arbitrary grids, and compactness, which is especially important for parallel computing. In this talk, recent progresses in the DG, SV, SD and a unified formulation called lifting collocation penalty will be presented. Numerical simulations with the SV and the SD methods will be presented. The talk will conclude with several remaining challenges in the research on high-order methods.

The mathematical understanding of tau-leaping algorithm

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 23, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Tiejun LiPeking University
The tau-leaping algorithm is proposed by D.T. Gillespie in 2001 for accelerating the simulation for chemical reaction systems. It is faster than the traditional stochastic simulation algorithm (SSA), which is an exact simulation algorithm. In this lecture, I will overview some recent mathematical results on tau-leaping done by our group, which include the rigorous analysis, construction of the new algorithm, and the systematic analysis of the error.

Projection and Nyström methods for FIE on bounded and unbounded intervals

Series
Applied and Computational Mathematics Seminar
Time
Monday, February 9, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Giuseppe MastroianniDept. of Mathematics and Informatics, Univ. of Basilicata, Italy)
In this talk I will show a simple projection method for Fredholm integral equation (FIE) defined on finite intervals and a Nyström method for FIE defined on the real semiaxis. The first method is based the polynomial interpolation of functions in weighted uniform norm. The second one is based on a Gauss truncated quadrature rule. The stability and the convergence of the methods are proved and the error estimates are given.

Sparse Solutions of Underdetermined Linear Systems

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 26, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Ming-Jun LaiUniversity of Georgia
I will first explain why we want to find the sparse solutions of underdetermined linear systems. Then I will explain how to solve the systems using \ell_1, OGA, and \ell_q approaches. There are some sufficient conditions to ensure that these solutions are the sparse one, e.g., some conditions based on restricted isometry property (RIP) by Candes, Romberg, and Tao'06 and Candes'08. These conditions are improved recently in Foucart and Lai'08. Furthermore, usually, Gaussian random matrices satisfy the RIP. I shall explain random matrices with strictly sub-Gaussian random variables also satisfy the RIP.

Electro-Optics for Beach Zone Observation

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 12, 2009 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Frank CrosbyNaval Surface Warfare Center, Panama City
Several imaging innovations have been designed to find hidden objects in coastal areas of entry, such as beaches and ports. Each imaging device is designed to exploit particular distinguishing characteristics. This talk with cover using a tunable multi-spectral camera for polarization based detection and object identification with a flash LIDAR camera that produces three-dimensional imagery.

Lower bounds for the Hilbert number of polynomial systems

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 17, 2008 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Maoan HanShanghai Normal University
Let H(m) denote the maximal number of limit cycles of polynomial systems of degree m. It is called the Hilbert number. The main part of Hilbert's 16th problem posed in 1902 is to find its value. The problem is still open even for m=2. However, there have been many interesting results on the lower bound of it for m\geq 2. In this paper, we give some new lower bounds of this number. The results obtained in this paper improve all existing results for all m\geq 7 based on some known results for m=3,4,5,6. In particular, we confirm the conjecture H(2k+1) \geq (2k+1)^2-1 and obtain that H(m) grows at least as rapidly as \frac{1}{2\ln2}(m+2)^2\ln(m+2) for all large m.

Geometric flow approach to multiscale solvation modeling

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 10, 2008 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
Guowei WeiMichigan State University

Solvation process is of fundamental importance to other complex biological processes, such signal transduction, gene regulation, etc. Solvation models can be roughly divided into two classes: explicit solvent models that treat the solvent in molecular or atomic detail while implicit solvent models take a multiscale approach that generally replaces the explicit solvent with a dielectric continuum. Because of their fewer degrees of freedom, implicit solvent methods have become popular for many applications in molecular simulation with applications in the calculations of biomolecular titration states, folding energies, binding affinities, mutational effects, surface properties, and many other problems in chemical and biomedical research. In this talk, we introduce a geometric flow based multiscale solvation model that marries a microscopic discrete description of biomolecules with a macroscopic continuum treatment of the solvent. The free energy functional is minimized by coupled geometric and potential flows. The geometric flow is driven not only by intrinsic forces, such as mean curvatures, but also by extrinsic potential forces, such as those from electrostatic potentials. The potential flow is driven mainly by a Poisson-Boltzmann like operator. Efficient computational methods, namely the matched interface and boundary (MIB) method, is developed for to solve the Poisson- Boltzmann equation with discontinuous interface. A Dirichlet- to-Neumann mapping (DTN) approach is developed to regularize singular charges from biomolecules.

An efficient numerical method for vesicle simulations

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 27, 2008 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 255
Speaker
George BirosCSE, Georgia Tech
Fluid membranes are area-preserving interfaces that resist bending. They are models of cell membranes, intracellular organelles, and viral particles. We are interested in developing simulation tools for dilute suspensions of deformable vesicles. These tools should be computationally efficient, that is, they should scale well as the number of vesicles increases. For very low Reynolds numbers, as it is often the case in mesoscopic length scales, the Stokes approximation can be used for the background fluid. We use a boundary integral formulation for the fluid that results in a set of nonlinear integro-differential equations for the vesicle dynamics. The motion of the vesicles is determined by balancing the nonlocal hydrodynamic forces with the elastic forces due to bending and tension. Numerical simulations of such vesicle motions are quite challenging. On one hand, explicit time-stepping schemes suffer from a severe stability constraint due to the stiffness related to high-order spatial derivatives and a milder constraint due to a transport-like stability condition. On the other hand, an implicit scheme can be expensive because it requires the solution of a set of nonlinear equations at each time step. We present two semi-implicit schemes that circumvent the severe stability constraints on the time step and whose computational cost per time step is comparable to that of an explicit scheme. We discretize the equations by using a spectral method in space, and a multistep third-order accurate scheme in time. We use the fast multipole method to efficiently compute vesicle-vesicle interaction forces in a suspension with a large number of vesicles. We report results from numerical experiments that demonstrate the convergence and algorithmic complexity properties of our scheme. Joint work with: Shravan K. Veerapaneni, Denis Gueyffier, and Denis Zorin.

Pages