TBA by Speaker at Joint UGA/GT Topology seminar
- Series
- Geometry Topology Seminar
- Time
- Monday, February 26, 2024 - 16:30 for 1 hour (actually 50 minutes)
- Location
- University of Georgia
- Speaker
Please Note: Note unusual date and length for the seminar!
It is well known that all contact 3-manifolds can be obtained from the standard contact structure on the 3-sphere by contact surgery on a Legendrian link. Hence, an interesting and much studied question asks what properties (e.g. tightness, fillability, vanishing or non-vanishing of various Floer or symplectic homology classes) of contact structures are preserved under various types of contact surgeries. The case for the negative contact surgeries is fairly well understood. The case of positive contact surgeries much more subtle. In this talk, extending an earlier work of the speaker with Conway and Etnyre, I will discuss some new results about symplectic fillability of positive contact surgeries, and in particular we will provide a necessary and sufficient condition for contact (positive) integer surgery along a Legendrian knot to yield a fillable contact manifold. When specialized to knots in the three sphere with its standard tight structure, this result can be rather efficient to find many examples of fillable surgeries along with various obstructions and surprising topological applications. This will report on joint work with T. Mark.
In dimension 4, there exist simply connected manifolds which are homeomorphic but not diffeomorphic; the difference between the distinct smooth structures can be localized using corks. Similarly, there exist diffeomorphisms of simply connected 4-manifolds which are topologically but not smoothly isotopic to the identity. In this talk, I will discuss some preliminary results towards an analogous localization of this phenomena using corks for diffeomorphisms. This project is joint work with Slava Krushkal, Anubhav Mukherjee, and Mark Powell.
For the past 25 years, a key player in contact topology has been the Floer-theoretic invariant called Legendrian contact homology. I'll discuss a package of new invariants for Legendrian knots and links that builds on Legendrian contact homology and is derived from rational symplectic field theory. This includes a Poisson bracket on Legendrian contact homology and a symplectic structure on augmentation varieties. Time permitting, I'll also describe an unexpected connection to cluster theory for a family of Legendrian links associated to positive braids. Parts of this are joint work in progress with Roger Casals, Honghao Gao, Linhui Shen, and Daping Weng.
We prove that the space of circle packings consistent with a given triangulation on a surface of genus at least two is projectively rigid, so that a packing on a complex projective surface is not deformable within that complex projective structure. More broadly, we show that the space of circle packings is a (smooth) submanifold within the space of complex projective structures on that surface.
We discuss new methods for using the Heegaard Floer homology of hypersurfaces to distinguish between smooth closed 4-manifolds that are homeomorphic but non-diffeomorphic. Specifically, for a 4-manifold X with b_1(X)=1, the minimum rank of the reduced Heegaard Floer homology of any embedded 3-manifold X representing a generator of H_1(X) gives a diffeomorphism invariant of X. We use this invariant to distinguish certain infinite families of exotic 4-manifolds that cannot be distinguished by previously known techniques. Using related ideas, we also provide the first known examples of (non-simply-connected) exotic 4-manifolds with negative definite intersection form. This is joint work with Tye Lidman and Lisa Piccirillo.
Abstract: Fundamental to our understanding of Teichm\"uller space T(S) of a closed oriented genus $g \geq 2$ surface S are two different perspectives: one as connected component in the PSL(2,\R) character variety \chi(\pi_1S, PSL(2,\R)) and one as the moduli space of marked hyperbolic structures on S. The latter can be thought of as a moduli space of (PSL(2,\R), \H^2) -structures. The G-Hitchin component, denoted Hit(S,G), for G a split real simple Lie group, is a connected component in \chi(\pi_1S, G) that is a higher rank generalization of T(S). In this talk, we discuss a new geometric structures (i.e., (G,X)-structures) interpretation of Hit(S, G_2'), where G_2' is the split real form of the exceptional complex simple Lie group G_2.
After discussing the motivation and background, we will present some of the main ideas of the theorem, including a family of almost-complex curves
that serve as bridge between the geometric structures and representations.
In her thesis, Maryam Mirzakhani counted the number of simple closed geodesics of bounded length on a (real) hyperbolic surface. This breakthrough theorem and the subsequent explosion of related results use techniques and draw inspiration from Teichmüller theory, symplectic geometry, surface topology, and homogeneous dynamics. In this talk, I’ll discuss some of these connections and a qualitative strengthening of her theorem, describing what these curves, and their complements, actually (generically) look like. This is joint work with Francisco Arana-Herrera.
I will discuss a mixture of results and conjectures related to the Khovanov homology and Knot Floer homology for ribbon knots. We will explore relationships with fusion numbers (a measure of complexity on ribbon disks) and particular families of symmetric unions (ribbon knots given by particular diagrams). This is joint work with Nathan Dunfield, Sherry Gong, Tom Hockenhull, and Marco Marengon.