Seminars and Colloquia by Series

Generic and non-generic synchronization configurations in networks of coupled oscillators

Series
Algebra Seminar
Time
Monday, October 3, 2022 - 13:30 for 1 hour (actually 50 minutes)
Location
Clough 125 Classroom
Speaker
Tianran ChenAuburn University at Montgomery

Networks of coupled oscillators are studied in biology, chemistry, physics, and engineering. The Kuramoto model is a simple dynamical system that models the nonlinear interaction among coupled oscillators. It has received widespread attention since it is simple enough to be analyzed rigorously yet complex enough to exhibit interesting emergent behaviors.

One such emergent behavior is the spontaneous synchronization of oscillators into special configurations. In the past decades, rigorous analysis of such synchronization configurations has been the focus of intensive studies.

In this talk, we explore the new insight to this problem provided by an algebraic and tropical approach.

Solving decomposable sparse polynomial systems

Series
Algebra Seminar
Time
Monday, September 26, 2022 - 13:30 for 1 hour (actually 50 minutes)
Location
Clough 125 Classroom
Speaker
Thomas YahlTAMU

Polynomial systems can be effectively solved by exploiting structure present in their Galois group. Esterov determined two conditions for which the Galois group of a sparse polynomial system is imprimitive, and showed that the Galois group is the symmetric group otherwise. A system with an imprimitive Galois group can be decomposed into simpler systems, which themselves may be further decomposed. Esterov's conditions give a stopping criterion for decomposing these systems and leads to a recursive algorithm for efficient solving.

Algebraic groups, moduli spaces of matroids, and the field with one element

Series
Algebra Seminar
Time
Monday, September 19, 2022 - 13:30 for 1 hour (actually 50 minutes)
Location
Clough 125 Classroom
Speaker
Matt BakerGeorgia Institute of Technology

 I will give an introduction to Oliver Lorscheid’s theory of ordered blueprints – one of the more successful approaches to “the field of one element” – and sketch its relationship to Tits models for algebraic groups and moduli spaces of matroids. The basic idea for these applications is quite simple: given a scheme over Z defined by equations with coefficients in {0,1,-1}, there is a corresponding “blue model” whose K-points (where K is the Krasner hyperfield) sometimes correspond to interesting combinatorial structures. For example, taking closed K-points of a suitable blue model for a split reductive group scheme G over Z gives the Weyl group of G, and taking K-points of a suitable blue model for the Grassmannian G(r,n) gives the set of matroids of rank r on {1,...,n}.

Extensions and generalizations of geometric bijections for graphs

Series
Algebra Seminar
Time
Monday, September 12, 2022 - 13:30 for 1 hour (actually 50 minutes)
Location
Clough 125 Classroom
Speaker
Changxin DingGeorgia Institute of Technology

Let G be a graph. Backman, Baker, and Yuen have constructed a family of bijections between spanning trees of G and the equivalence classes of orientations up to cycle-cocycle reversal, called the geometric bijections. Their proof makes use of zonotopal subdivisions. Recently we have extended the geometric bijections to subgraph-orientation correspondences. Moreover, we have also constructed a larger family of bijections, which contains the geometric bijections and the Bernardi bijections. Most of our work is inspired by geometry but proved combinatorially.  

Weights and Automorphisms of Cyclic Subspace Codes.

Series
Algebra Seminar
Time
Monday, August 29, 2022 - 13:30 for 1 hour (actually 50 minutes)
Location
Clough 125 classroom
Speaker
Hunter LehmannGeorgia Institute of Technology

Cyclic orbit codes are subspace codes generated by the action of the Singer subgroup F_{q^n}^* on an F_q-subspace U of F_{q^n}. The weight distribution of a code is the vector whose ith entry is the number of codewords with distance i to a fixed reference generator of the code. We will investigate the weight distribution for a few categories of cyclic orbit codes, including optimal codes. Further, we want to know when two cyclic orbit codes with the same weight distribution are isometric. To answer this question, we determine the possible automorphism groups for cyclic orbit codes.

Hodge theory of mapping class group dynamics

Series
Algebra Seminar
Time
Tuesday, April 26, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel LittUniversity of Georgia

This is joint work with Aaron Landesman. There are a number of difficult open questions around representations of free and surface groups, which it turns out are accessible to methods from Hodge theory and arithmetic geometry. For example, I'll discuss applications of these methods to the following concrete theorem about surface groups, whose proof relies on non-abelian Hodge theory and the Langlands program:

Theorem. Let $\rho: \pi_1(\Sigma_{g,n})\to GL_r(\mathbb{C})$ be a representation of the fundamental group of a compact orientable surface of genus $g$ with $n$ punctures, with $r<\sqrt{g+1}$. If the conjugacy class of $\rho$ has finite orbit under the mapping class group of $\Sigma_{g,n}$, then $\rho$ has finite image.

This answers a question of Peter Whang. I'll also discuss closely related applications to the Putman-Wieland conjecture on homological representations of mapping class groups. 

TBA

Series
Algebra Seminar
Time
Tuesday, April 19, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Michael BurrClemson University

Baker-Lorscheid (Hyperfield) Multiplicities in Two Variables

Series
Algebra Seminar
Time
Tuesday, April 12, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Trevor GunnGeorgia Tech

For polynomials in 1 variable, Matt Baker and Oliver Lorschied were able to connect results about roots of polynomials over valued
fields (Newton polygons) and over real fields (Descartes's rule) by looking at factorization of polynomials over the tropical and signed
hyperfields respectively. In this talk, I will describe some ongoing work with Andreas Gross about extending these ideas to two or more
variables. Our main tool is the use of resultants to transform questions about 0-dimensional systems of equations to factoring a single
homogeneous polynomial.

Stratified polyhedral homotopy: Picking up witness sets on our way to isolated solutions!

Series
Algebra Seminar
Time
Tuesday, April 5, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tianran ChenAuburn University at Montgomery

Numerical algebraic geometry revolves around the study of solutions to polynomial systems via numerical method. Two of the fundamental tools in this field are the polyhedral homotopy of Huber and Sturmfels for computing isolated solutions and the concept of witness sets put forth by Sommese and Wampler as numerical representations for non-isolated solution components. In this talk, we will describe a stratified polyhedral homotopy method that will bridge the gap between these two largely independent area. Such a homotopy method will discover numerical representations of non-isolated solution components as by-products from the process of computing isolated solutions. We will also outline the pipeline of numerical algorithms necessary to implement this homotopy method on modern massively parallel computing architecture.

Image formation ideals

Series
Algebra Seminar
Time
Tuesday, March 29, 2022 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tim DuffUniversity of Washington

Projective space, rational maps, and other notions from algebraic geometry appear naturally in the study of image formation and various camera models in computer vision. Considerable attention has been paid to multiview ideals, which collect all polynomial constraints on images that must be satisfied by a given camera arrangement. We extend past work on multiview ideals to settings where the camera arrangement is unknown. We characterize various "image formation ideals", which are interesting objects in their own right. Some nice previous results about multiview ideals also fall out from our framework. We give a new proof of a result by Aholt, Sturmfels, and Thomas that the multiview ideal has a universal Groebner basis consisting of k-focals (also known as k-linearities in the vision literature) for k in {2,3,4}. (Preliminary report based on ongoing joint projects with Sameer Agarwal, Max Lieblich, Jessie Loucks Tavitas, and Rekha Thomas.)

Pages