Seminars and Colloquia by Series

Syzygies and parking functions from hypergraph polytopes

Series
Algebra Seminar
Time
Monday, November 18, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anton DochtermannTexas State University

Please Note: There will be a pre-seminar at 10:55 am in Skiles 005.

For a connected graph G, the set of G-parking functions are integer sequences counted by spanning trees that arise in the theory of chip-firing on G.  They can also be defined as the standard monomials of a `G-parking function ideal', whose homological properties have interesting combinatorial interpretations. We extend these constructions to the setting of hypergraphs, where edges can have multiple vertices. We study algebraic and combinatorial aspects of parking functions in this context, employing generalized notions of acyclic orientations and spanning trees. Minimal cellular resolutions of the underlying ideals can be understood in terms of certain generalized permutohedra. This is joint work with Ayah Almousa and Ben Smith, as well as an REU project with Timothy Blanton, Isabelle Hong, Suho Oh, and Zhan Zhan.

Enumeration of special divisors on graphs

Series
Algebra Seminar
Time
Monday, November 11, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nathan PfluegerAmherst College

Please Note: There will be a pre-seminar at 10:55 am.

Young tableaux arise in the enumerative geometry of linear series on curves in formulas for the Chow class and the holomorphic Euler characteristic of Brill--Noether varieties. I will discuss an intriguing tropical generalization of these two facts: the formulas for Chow class and Euler characteristic of Brill--Noether loci on a general curve occur in the first and last terms of the Ehrhart polynomial of the tropical Brill--Noether loci on a chain of loops. I will speculate on some generalizations and algebraic analogs of this calculation.

Multigraded Stillman Conjecture

Series
Algebra Seminar
Time
Monday, November 4, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
John CobbAuburn University

Please Note: There will be a pre-seminar at 10:55 am in Skiles 005.

In 2000, Mike Stillman conjectured that the projective dimension of a homogeneous ideal in a standard graded polynomial ring can be bounded just in terms of the number and degrees of its generators. I’ll describe the Ananyan-Hochster principle important to its proof, how to package this up using ultraproducts, and use this to give a characterization of the polynomial rings graded by any abelian group that possess a Stillman bound.

The equivariant $\gamma$-positivity of matroid Chow rings

Series
Algebra Seminar
Time
Monday, October 28, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hsin-Chieh Liao Washington University in St. Louis

Please Note: There will be a pre-seminar at 10:55 am in Skiles 005

Chow rings and augmented Chow rings of matroids played important roles in the settlement of the Heron-Rota-Welsh conjecture and the Dowling-Wilson top-heavy conjecture. Their Hilbert series have been extensively studied since then. It was shown by Ferroni, Mathern, Steven, and Vecchi, and independently by Wang, that the Hilbert series of Chow rings of matroids are $\gamma$-positive using inductive arguement followed from the semismall decompositions of the Chow ring of matroids. However, they do not have an interpretation for the coefficients in the $\gamma$-expansion. Recently, Angarone, Nathanson, and Reiner further conjectured that Chow rings of matroids are equivariant $\gamma$-positive under the action of groups of matroid automorphisms. In this talk, I will give a proof of this conjecture without using semismall decomposition, showing that both Chow rings and augmented Chow rings of matroids are equivariant $\gamma$-positive. Moreover, we obtain explicit descriptions for the coefficients of the equivariant $\gamma$-expansions. Then we consider the special case of uniform matroids which extends Shareshian and Wachs Schur-$\gamma$-positivity of Frobenius characteristics of the cohomologies of the permutahedral and the stellahedral varieties.

Density estimation for Gaussian mixture models

Series
Algebra Seminar
Time
Monday, October 21, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Julia LindbergUT Austin

Density estimation for Gaussian mixture models is a classical problem in statistics that has applications in a variety of disciplines. Two solution techniques are commonly used for this problem: the method of moments and maximum likelihood estimation. This talk will discuss both methods by focusing on the underlying geometry of each problem.

Lie Groups and Applications to Multi-Orientation Image Analysis

Series
Algebra Seminar
Time
Monday, October 7, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Nicky J. van den BergEindhoven University of Technology

Please Note: There will be a pre-talk at 10:55 am in Skiles 005.

Retinal images are often used to examine the vascular system in a non-invasive way. Studying the behavior of the vasculature on the retina allows for noninvasive diagnosis of several diseases as these vessels and their behavior are representative of the behavior of vessels throughout the human body. For early diagnosis and analysis of diseases, it is important to compare and analyze the complex vasculature in retinal images automatically.

During this talk, we will talk about a geodesic tracking approach that is better able to handle difficult structures, like high curvature and crossings. Additionally, we discuss how one can identify connected components in images that allow for small interruptions within the same component. Both methods takes place in the lifted space of positions and orientations SE(2), which allows us to differentiate between crossings and bifurcations.

Shimura operators and interpolation polynomials

Series
Algebra Seminar
Time
Monday, September 30, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Songhao ZhuGeorgia Tech

Please Note: This talk starts at 1pm rather than the usual time.

The late Goro Shimura proposed a question regarding certain invariant differential operators on a Hermitian symmetric space. This was answered by Sahi and Zhang by showing that the Harish-Chandra images of these namesake operators are specializations of Okounkov's BC-symmetric interpolation polynomials. We prove, in the super setting, that the Harish-Chandra images of super Shimura operators are specializations of certain BC-supersymmetric interpolation polynomials due to Sergeev and Veselov. Similar questions include the Capelli eigenvalue problems which are generalized to the quantum and/or super settings. This talk is based a joint work with Siddhartha Sahi.

Matrix completion and tensor codes

Series
Algebra Seminar
Time
Monday, September 23, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Matt LarsonPrinceton University and the Institute for Advanced Study

Please Note: There will be a pre-seminar at 10:55 am in Skiles 005.

The rank r matrix completion problem studies whether a matrix where some of the entries have been filled in with generic complex numbers can be completed to a matrix of rank at most r. This problem is governed by the bipartite rigidity matroid, which is a matroid studied in combinatorial rigidity theory. We show that the study of the bipartite rigidity matroid is related to the study of tensor codes, a topic in information theory, and use this relation to understand new cases of both problems. Joint work with Joshua Brakensiek, Manik Dhar, Jiyang Gao, and Sivakanth Gopi.

Orlik-Terao algebras and internal zonotopal algebras

Series
Algebra Seminar
Time
Monday, September 16, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Colin CrowleyUniversity of Oregon

Please Note: There will be a pre-seminar at 10:50am in Skiles 005.

In 2017 Moseley, Proudfoot, and Young conjectured that the reduced Orlik-Terao algebra of the braid matroid was isomorphic as a symmetric group representation to the cohomology of a certain configuration space. This was proved by Pagaria in 2022. We generalize Pagaria's result from the braid arrangement to arbitrary hyperplane arrangements and recover a new proof in the case of the braid arrangement. Along the way, we give formulas for several other invariants of a hyperplane arrangement. Joint with Nick Proudfoot.

Stubborn Polynomials

Series
Algebra Seminar
Time
Monday, September 9, 2024 - 11:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Greg BlekhermanGeorgia Tech

A globally nonnegative polynomial F is called stubborn if no odd power of F is a sum of squares. We develop a new invariant of a singularity of a form (homogeneous polynomial) in 3 variables, which allows us to conclude that if the sum of these invariants over all zeroes of a nonnegative form is large enough, then the form is stubborn. As a consequence, we prove that if an extreme ray of the cone of nonnegative ternary sextics is not a sum of squares, then all of its odd powers are also not sums of squares, and we provide more examples of this phenomenon for ternary forms in higher degree. This is joint work with Khazhgali Kozhasov and Bruce Reznick.

Pages