Seminars and Colloquia by Series

The boundary method for numerical optimal transport

Series
Applied and Computational Mathematics Seminar
Time
Monday, November 7, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
JD WalshGA Tech Mathematics, doctoral candidate
The boundary method is a new algorithm for solving semi-discrete transport problems involving a variety of ground cost functions. By reformulating a transport problem as an optimal coupling problem, one can construct a partition of its continuous space whose boundaries allow accurate determination of the transport map and its associated Wasserstein distance. The boundary method approximates region boundaries using the general auction algorithm, controlling problem size with a multigrid discard approach. This talk describes numerical and mathematical results obtained when the ground cost is a convex combination of lp norms, and shares preliminary work involving other ground cost functions.

An adaptive coupled level set and moment-of-fluid method for simulating the solidification process in multimaterial systems

Series
Applied and Computational Mathematics Seminar
Time
Tuesday, November 1, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dr. Mehdi VahabFlorida State University Math
An adaptive hybrid level set moment-of-fluid method is developed to study the material solidification of static and dynamic multiphase systems. The main focus is on the solidification of water droplets, which may undergo normal or supercooled freezing. We model the different regimes of freezing such as supercooling, nucleation, recalescence, isothermal freezing and solid cooling accordingly to capture physical dynamics during impact and solidification of water droplets onto solid surfaces. The numerical simulations are validated by comparison to analytical results and experimental observations. The present simulations demonstrate the ability of the method to capture sharp solidification front, handle contact line dynamics, and the simultaneous impact, merging and freezing of a drop. Parameter studies have been conducted, which show the influence of the Stefan number on the regularity of the shape of frozen droplets. Also, it is shown that impacting droplets with different sizes create ice shapes which are uniform near the impact point and become dissimilar away from it. In addition, surface wettability determines whether droplets freeze upon impact or bounce away.

Perspectives on Diffeomorphic Image Registration

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 24, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Lars RuthottoEmory University Math/CS
Image registration is an essential task in almost all areas involving imaging techniques. The goal of image registration is to find geometrical correspondences between two or more images. Image registration is commonly phrased as a variational problem that is known to be ill-posed and thus regularization is commonly used to ensure existence of solutions and/or introduce prior knowledge about the application in mind. Many relevant applications, e.g., in biomedical imaging, require that plausible transformations are diffeomorphic, i.e., smooth mappings with a smooth inverse. This talk will present and compare two modeling strategies and numerical approaches to diffeomorphic image registration. First, we will discuss regularization approaches based on nonlinear elasticity. Second, we will phrase image registration as an optimal control problem involving hyperbolic PDEs which is similar to the popular framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM). Finally, we will consider computational aspects and present numerical results for real-life medical imaging problems.

Backward SDE method for nonlinear filtering problems

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 17, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Yanzhao CaoAuburn University Mathematics
A nonlinear filtering problem can be classified as a stochastic Bayesian optimization problem of identifying the state of a stochastic dynamical system based on noisy observations of the system. Well known numerical simulation methods include unscented Kalman filters and particle filters. In this talk, we consider a class of efficient numerical methods based on forward backward stochastic differential equations. The backward SDEs for nonlinear filtering problems are similar to the Fokker-Planck equations for SDEs. We will describe the process of deriving such backward SDEs as well as high order numerical algorithms to solve them, which in turn solve nonlinear filtering problems.

Knudsen layer: coupling fluids with kinetics

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 3, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Qin LiUW-Madison
Many kinetic equations have the corresponding fluid limits. In the zero limit of the Knudsen number, one derives the Euler equation out of the Boltzmann equation and the heat equation out of the radiative transfer equation. While there are good numerical solvers for both kinetic and fluid equations, it is not quite well-understood when the two regimes co-exist. In this talk, we model the layer between the fluid and the kinetic using a half-space equation, study the well-posedness, design a numerical solver, and utilize it to couple the two sets of equations that govern separate domains. It is a joint work with Jianfeng Lu and Weiran Sun.

CANCELED Modeling Language Change in Online Social Networks

Series
Applied and Computational Mathematics Seminar
Time
Monday, September 12, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Jacob EisensteinGA Tech School of Interactive Computing
Language change is a complex social phenomenon, revealing pathways of communication and sociocultural influence. But while language change has long been a topic of study in sociolinguistics, traditional linguistic research methods rely on circumstantial evidence, estimating the direction of change from differences between older and younger speakers. In this research, we use a data set of several million Twitter users to track language changes in progress. First, we show that language change can be viewed as a form of social influence: we observe complex contagion for ``netspeak'' abbreviations (e.g., lol) and phonetic spellings, but not for older dialect markers from spoken language. Next, we test whether specific types of social network connections are more influential than others, using a parametric Hawkes process model. We find that tie strength plays an important role: densely embedded social ties are significantly better conduits of linguistic influence. Geographic locality appears to play a more limited role: we find relatively little evidence to support the hypothesis that individuals are more influenced by geographically local social ties, even in the usage of geographical dialect markers.

Difference of convex functions for eigenvalue problems

Series
Applied and Computational Mathematics Seminar
Time
Monday, August 8, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Yunho KimUNIST, Korea
Inspired by the usefulness of difference of convex functions in some problems, e.g. sparse representations, we use such an idea of difference of convex functions to propose a method of finding an eigenfunction of a self-adjointoperator. In a matrix setting, this method always finds an eigenvector of a symmetric matrix corresponding to the smallest eigenvalue without solving Ax=b. In fact, such a matrix A is allowed to be singular, as well. We can apply the same setting to a generalized eigenvalue problem. We will discuss its convergence as well.

Log-Hilbert-Schmidt distance between covariance operators and their applications

Series
Applied and Computational Mathematics Seminar
Time
Wednesday, June 22, 2016 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dr. Ha Quang, Minh Istituto Italiano di Tecnologia (Italy)
Symmetric positive definite (SPD) matrices play important roles in numerous areas of mathematics, statistics, and their applications in machine learning, optimization, computer vision, and related fields. Among the most important topics in the study of SPD matrices are the distances between them that can properly capture the geometry of the set of SPD matrices. Two of the most widely used distances are the affine-invariant distance and the Log-Euclidean distance, which are geodesic distances corresponding to two different Riemannian metrics on this set. In this talk, we present our recently developed concept of Log-Hilbert-Schmidt (Log-HS) distance between positive definite Hilbert-Schmidt operators on a Hilbert space.This is the generalization of the Log-Euclidean distance between SPD matrices to the infinite-dimensional setting. In the case of reproducing kernel Hilbert space (RKHS) covariance operators, we obtain closed form formulas for the Log-HS distance, expressed via Gram matrices. As a practical example, we demonstrate an application of the Log-HS distance to the problem of image classification in computer vision.

Low-Budget PDE Solver with Painting Applications

Series
Applied and Computational Mathematics Seminar
Time
Monday, April 11, 2016 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Byungmoon KimAdobe Research
This talk will tell the story on using simulation for painting. I will tell a few of projects that had simulation and painting involved. One is iPad-based ultra-low-cost real time simulation of old photography process to compute effects that modern day users may find interesting. The other is more full-blown fluid simulation for painting using highest-end GPU. Even with massive processing power of GPU, real time high fidelity painting simulation is hard since computation budget is limited. Basically we should deal with large errors. It may sound odd if someone says that very low-accuracy simulation is interesting - but this is very true. In particular, we tried to pull most pressure effect out from about 10 Jacobi iterations that we could afford. I would like to share my experience on improving fixed number of fixed point iterations.

[Unusual date] Bivariate Spline Solution to Nonlinear Diffusive PDE and Its Biological Applications

Series
Applied and Computational Mathematics Seminar
Time
Friday, April 8, 2016 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Ming-Jun LaiDepartment of Mathematics, University of Georgia
Bivariate splines are smooth piecewise polynomial functions defined on a triangulation of arbitrary polygon. They are extremely useful for numerical solution of PDE, scattered data interpolation and fitting, statistical data analysis, and etc.. In this talk, I shall explain its new application to a biological study. Mainly, I will explain how to use them to numerically solve a type of nonlinear diffusive time dependent PDE which arise from a biological study on the density of species over a region of interest. I apply our spline solution to simulate a real life study on malaria diseases in Bandiagara, Mali. Our numerical result show some similarity with the pattern from the biological study in2013 in a blind testing. In addition, I shall explain how to use bivariate splines to numerically solve several systems of diffusive PDEs: e.g. predator-prey type, resource competing type and other type systems.

Pages