Seminars and Colloquia by Series

The reduced knot Floer complex

Series
Geometry Topology Seminar
Time
Monday, April 14, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
David KrcatovichMSU
The set of knots up to a four-dimensional equivalence relation can be given the structure of a group, called the (smooth) knot concordance group. We will discuss how to compute concordance invariants using Heegaard Floer homology. We will then introduce the idea of a "reduced" knot Floer complex, see how it can be used to simplify computations, and give examples of how it can be helpful in distinguishing knots which are not concordant.

Ptolemy coordinates and the A-polynomial

Series
Geometry Topology Seminar
Time
Friday, April 11, 2014 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Christian ZickertUniversity of Maryland
The Ptolemy coordinates are efficient coordinates for computingboundary-unipotent representations of a 3-manifold group in SL(2,C). Wedefine a slightly modified version which allows you to computerepresentations that are not necessarily boundary-unipotent. This givesrise to a new algorithm for computing the A-polynomial.

Detection of torus knots

Series
Geometry Topology Seminar
Time
Monday, April 7, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xingru ZhangSUNY Buffalo
We show that each (p,q)-torus knot in the 3-sphere is determined by its A-polynomial and its knot Floer homology. This is joint work with Yi Ni.

Cohomology of arithmetic groups over function fields

Series
Geometry Topology Seminar
Time
Monday, March 31, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kevin WortmanUniversity of Utah
Suppose that F is a field with p elements, and let G be the finite-index congruence subgroup of SL(n, F[t]) obtained as the kernel of the homomorphism that reduces entries in SL(n, F[t]) modulo the ideal (t). Then H^(n-1)(G;F) is infinitely generated. I'll explain the ideas behind the proof of the above result, which is a special case of a result that applies to any noncocompact arithmetic group defined over function fields.

Non-looseness of non-loose knots

Series
Geometry Topology Seminar
Time
Monday, March 3, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ken BakerUniversity of Miami
A contact structure on a 3-manifold is called overtwisted ifthere is a certain kind of embedded disk called an overtwisted disk; it istight if no such disk exists. A Legendrian knot in an overtwisted contact3-manifold is loose if its complement is overtwisted and non-loose if itscomplement is tight. We define and compare two geometric invariants, depthand tension, that measure how far from loose is a non-loose knot. This isjoint work with Sinem Onaran.

Hamiltonian Circle Actions with Isolated Fixed Points on 6-Dimensional Symplectic Manifolds

Series
Geometry Topology Seminar
Time
Monday, February 17, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Andrew FanoeMorehouse College
The question of what conditions guarantee that a symplectic$S^1$ action is Hamiltonian has been studied for many years. Sue Tolmanand Jonathon Weitsman proved that if the action is semifree and has anon-empty set of isolated fixed points then the action is Hamiltonian.Furthermore, Cho, Hwang, and Suh proved in the 6-dimensional case that ifwe have $b_2^+=1$ at a reduced space at a regular level $\lambda$ of thecircle valued moment map, then the action is Hamiltonian. In this paper, wewill use this to prove that certain 6-dimensional symplectic actions whichare not semifree and have a non-empty set of isolated fixed points areHamiltonian. In this case, the reduced spaces are 4-dimensional symplecticorbifolds, and we will resolve the orbifold singularities and useJ-holomorphic curve techniques on the resolutions.

Convex cocompactness in mapping class groups via quasiconvexity in right-angled Artin groups

Series
Geometry Topology Seminar
Time
Monday, February 10, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Johanna MangahasU at Buffalo
I'll talk about joint work with Sam Taylor. We characterize convex cocompact subgroups of mapping class groups that arise as subgroups of specially embedded right-angled Artin groups. We use this to construct convex cocompact subgroups of Mod(S) whose orbit maps into the curve complex have small Lipschitz constants.

Smooth 4-manifolds, surface diagrams and holomorphic polygons

Series
Geometry Topology Seminar
Time
Monday, February 3, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jonathan WilliamsUniversity of Georgia
The topic of smooth 4-manifolds is a long established, yetunderdeveloped one. Its mystery lies partly in its wealth of strangeexamples, coupled with a lack of generally applicable tools to putthose examples into a sensible framework, or to effectively study4-manifolds that do not satisfy rather strict criteria. I will outlinerecent work that associates objects from symplectic topology, calledweak Floer A-infinity algebras, to general smooth, closed oriented4-manifolds. As time permits, I will speculate on a "genus-g Fukayacategory of smooth 4-manifolds.

Pages