Seminars and Colloquia by Series

Divisors on graphs and connected flags

Series
Graph Theory Seminar
Time
Thursday, November 15, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Farbod ShokriehMath, GT
Associated to every finite graph G there is a canonical ideal which encodes the linear equivalences of divisors on G. In the study of this ideal the concept of "connected flags" arise naturally. The focus of this talk will be the study of combinatorial properties of these connected flags. This is a joint work with Fatemeh Mohammadi. (This talk is related to the talk I gave on October 12th in the Combinatorics seminar, but I will not assume anything from the previous talk.)

Colin de Verdiere-type invariants for signed graphs and odd-K_4- and odd-K^2_3-free signed graphs

Series
Graph Theory Seminar
Time
Thursday, November 8, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hein van der HolstGeorgia State University
A signed graph is a pair $(G,\Sigma)$ where $G$ is an undirected graph (in which parallel edges are permitted, but loops are not) and $\Sigma \subseteq E(G)$. The edges in $\Sigma$ are called odd and the other edges are called even. A cycle of $G$ is called odd if it has an odd number of odd edges. If $U\subseteq V(G)$, then re-signing $(G,\Sigma)$ on $U$ gives the signed graph $(G,\Sigma\Delta \delta(U))$. A signed graph is a minor of $(G,\Sigma)$ if it comes from $(G,\Sigma)$ by a series of re-signing, deletions of edges and isolated vertices, and contractions of even edges. If $(G,\Sigma)$ is a signed graph with $n$ vertices, $S(G,\Sigma)$ is the set of all symmetric $n\times n$ matrices $A=[a_{i,j}]$ with $a_{i,j} > 0$ if $i$ and $j$ are connected by only odd edges, $a_{i,j} < 0$ if $i$ and $j$ are connected by only even edges, $a_{i,j}\in \mathbb{R}$ if $i$ and $j$ are connected by both even and odd edges, $a_{i,j}=0$ if $i$ and $j$ are not connected by any edges, and $a_{i,i} \in \mathbb{R}$ for all vertices $i$. The stable inertia set, $I_s(G,\Sigma)$, of a signed graph $(G,\Sigma)$ is the set of all pairs $(p,q)$ such that there exists a matrix $A\in S(G,\Sigma)$ that has the Strong Arnold Hypothesis, and $p$ positive and $q$ negative eigenvalues. The stable inertia set of a signed graph forms a generalization of $\mu(G)$, $\nu(G)$ (introduced by Colin de Verdi\`ere), and $\xi(G)$ (introduced by Barioli, Fallat, and Hogben). A specialization of $I_s(G,\Sigma)$ is $\nu(G,\Sigma)$, which is defined as the maximum of the nullities of positive definite matrices $A\in S(G,\Sigma)$ that have the Strong Arnold Hypothesis. This invariant is closed under taking minors, and characterizes signed graphs with no odd cycles as those signed graphs $(G,\Sigma)$ with $\nu(G,\Sigma)\leq 1$, and signed graphs with no odd-$K_4$- and no odd-$K^2_3$-minor as those signed graphs $(G,\Sigma)$ with $\nu(G,\Sigma)\leq 2$. In this talk we will discuss $I_s(G,\Sigma)$, $\nu(G,\Sigma)$ and these characterizations. Joint work with Marina Arav, Frank Hall, and Zhongshan Li.

Tree-width and Dimension - Part 2

Series
Graph Theory Seminar
Time
Thursday, October 25, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
William T. TrotterMath, GT
Over the past 40 years, researchers have made many connections between the dimension of posets and the issue of planarity for graphs and diagrams, but there appears to be little work connecting dimension to structural graph theory. This situation has changed dramatically in the last several months. At the Robin Thomas birthday conference, Gwenael Joret, made the following striking conjecture, which has now been turned into a theorem: The dimension of a poset is bounded in terms of its height and the tree-width of its cover graph. In this talk, I will present the proof of this result. The general contours of the argument should be accessible to graph theorists and combinatorists (faculty and students) without deep knowledge of either dimension or tree-width. The proof of the theorem was accomplished by a team of six researchers: Gwenael Joret, Piotr Micek, Kevin Milans, Tom Trotter, Bartosz Walczak and Ruidong Wang.

A new bound for the 2/3 Conjecture

Series
Graph Theory Seminar
Time
Thursday, April 26, 2012 - 13:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter WhalenMath, GT
We show that any n-vertex complete graph with edges colored with three colors contains a set of at most four vertices such that the number of the neighbors of these vertices in one of the colors is at least 2n/3. The previous best value proved by Erdos et al in 1989 is 22. It is conjectured that three vertices suffice. This is joint work with Daniel Kral, Chun-Hung Liu, Jean-Sebastien Sereni, and Zelealem Yilma.

The structure of graphs excluding a fixed immersion

Series
Graph Theory Seminar
Time
Thursday, April 19, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Paul WollanISyE, GT and The Sapienza University of Rome
A graph $G$ contains a graph $H$ as an immersion if there exist distinct vertices $\pi(v) \in V(G)$ for every vertex $v \in V(H)$ and paths $P(e)$ in $G$ for every $e \in E(H)$ such that the path $P(uv)$ connects the vertices $\pi(u)$ and $\pi(v)$ in $G$ and furthermore the paths $\{P(e):e \in E(H)\}$ are pairwise edge disjoint. Thus, graph immersion can be thought of as a generalization of subdivision containment where the paths linking the pairs of branch vertices are required to be pairwise edge disjoint instead of pairwise internally vertex disjoint. We will present a simple structure theorem for graphs excluding a fixed $K_t$ as an immersion. The structure theorem gives rise to a model of tree-decompositions based on edge cuts instead of vertex cuts. We call these decompositions tree-cut decompositions, and give an appropriate definition for the width of such a decomposition. We will present a ``grid" theorem for graph immersions with respect to the tree-cut width. This is joint work with Paul Seymour.

Augmenting undirected node-connectivity by one - Part II

Series
Graph Theory Seminar
Time
Thursday, March 29, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Laszlo VeghCollege of Computing, Georgia Tech
In the node-connectivity augmentation problem, we want to add a minimum number of new edges to an undirected graph to make it k-node-connected. The complexity of this question is still open, although the analogous questions of both directed and undirected edge-connectivity and directed node-connectivity augmentation are known to be polynomially solvable. I present a min-max formula and a polynomial time algorithm for the special case when the input graph is already (k-1)-connected. The formula has been conjectured by Frank and Jordan in 1994. In the first lecture, I presented previous results on the other connectivity augmentation variants. In the second part, I shall present my min-max formula and the main ideas of the proof.

Augmenting undirected node-connectivity by one

Series
Graph Theory Seminar
Time
Thursday, March 8, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Laszlo VeghCoC, GT
In the node-connectivity augmentation problem, we want to add a minimum number of new edges to an undirected graph to make it k-node-connected. The complexity of this question is still open, although the analogous questions of both directed and undirected edge-connectivity and directed node-connectivity augmentation are known to be polynomially solvable. I present a min-max formula and a polynomial time algorithm for the special case when the input graph is already (k-1)-connected. The formula has been conjectured by Frank and Jordan in 1994. In the first lecture, I shall investigate the background, present some results on the previously solved connectivity augmentation cases, and exhibit examples motivating the complicated min-max formula of my paper.

Triangle-free families of segments with large chromatic number

Series
Graph Theory Seminar
Time
Thursday, February 16, 2012 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Arkadiusz PawlikJagiellonian University, Krakow, Poland
We consider intersection graphs of families of straight line segments in the euclidean plane and show that for every integer k, there is a family S of line segments so that the intersection graph G of the family S is triangle-free and has chromatic number at least k. This result settles a conjecture of Erdos and has a number of applications to other classes of intersection graphs.

Circuits in medial graphs and bipartite partial duals

Series
Graph Theory Seminar
Time
Thursday, November 17, 2011 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Iain MoffattUniversity of South Alabama
A classical result in graph theory states that, if G is a plane graph, then G is Eulerian if and only if its dual, G*, is bipartite. I will talk about an extension of this well-known result to partial duality. (Where, loosely speaking, a partial dual of an embedded graph G is a graph obtained by forming the dual with respect to only a subset of edges of G.) I will extend the above classical connection between bipartite and Eulerian plane graphs, by providing a necessary and sufficient condition for the partial dual of a plane graph to be Eulerian or bipartite. I will then go on to describe how the bipartite partial duals of a plane graph G are completely characterized by circuits in its medial graph G_m. This is joint work with Stephen Huggett.

Pages