## Seminars and Colloquia by Series

### A transversal of polytope facets

Series
Graph Theory Seminar
Time
Tuesday, March 15, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Joseph BriggsAuburn University

Suppose you have a subset $S$ of the vertices of a polytope which contains at least one vertex from every face. How large must $S$ be? We believe, in the worst case, about half of the number of vertices of the polytope. But we don’t really know why. We have found some situational evidence, but also some situational counter-evidence. This is based on joint work with Michael Dobbins and Seunghun Lee.

### New and improved bounds on the burning number of a graph

Series
Graph Theory Seminar
Time
Tuesday, February 22, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Zoom
Speaker
Anthony BonatoRyerson University

Graph burning is a simplified model for the spread of influence in a network. Associated with the process is the burning number, which quantifies the speed at which the influence spreads to every vertex. The Burning Number Conjecture claims that for every connected graph $G$ of order $n,$ its burning number satisfies $b(G) \le \lceil \sqrt{n} \rceil$. While the conjecture remains open, we prove the best-known bound on the burning number of a connected graph $G$ of order $n,$ given by $b(G) \le \sqrt{4n/3} + 1$, improving on the previously known $\sqrt{3n/2}+O(1)$ bound.

### Approximating TSP walks in sub cubic graphs

Series
Graph Theory Seminar
Time
Tuesday, February 15, 2022 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Youngho YooGeorgia Institute of Technology

We prove that every simple 2-connected subcubic graph on $n$ vertices with $n_2$ vertices of degree 2 has a TSP walk of length at most $\frac{5n+n_2}{4}-1$, confirming a conjecture of Dvořák, Král', and Mohar. This bound is best possible; there are infinitely many subcubic and cubic graphs whose minimum TSP walks have lengths $\frac{5n+n_2}{4}-1$ and $\frac{5n}{4} - 2$ respectively. We characterize the extremal subcubic examples meeting this bound. We also give a quadratic-time combinatorial algorithm for finding such a TSP walk. In particular, we obtain a $\frac{5}{4}$-approximation algorithm for the graphic TSP on simple cubic graphs, improving on the previously best known approximation ratio of $\frac{9}{7}$.

### A proof of the Erdős–Faber–Lovász conjecture and related problems

Series
Graph Theory Seminar
Time
Tuesday, December 14, 2021 - 11:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Abhishek MethukuUniversity of Birmingham

Please Note: Note the unusual time!

The famous Erdős–Faber–Lovász conjecture (posed in 1972) states that the chromatic index of any linear hypergraph on n vertices is at most n. In this talk, I will briefly sketch a proof of this conjecture for every large n. If time permits, I will also talk about our solution to a problem of Erdős from 1977 about chromatic index of hypergraphs with bounded codegree. Joint work with D. Kang, T. Kelly, D.Kuhn and D. Osthus.

### Density and graph edge coloring

Series
Graph Theory Seminar
Time
Tuesday, December 7, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Guangming JingAugusta University

Given a multigraph $G=(V,E)$, the chromatic index $\chi'(G)$ is the minimum number of colors needed to color the edges of $G$ such that no two incident edges receive the same color. Let $\Delta(G)$ be the maximum degree of $G$ and let  $\Gamma(G):=\max \big\{\frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hskip 2mm {\rm and \hskip 2mm odd} \big\}$. $\Gamma(G)$ is called the density of $G$. Clearly, the density is a lower bound for the chromatic index $\chi'(G)$. Moreover, this value can be computed in polynomial time. Goldberg and Seymour in the 1970s conjectured that $\chi'(G)=\lceil\Gamma(G)\rceil$ for any multigraph $G$ with $\chi'(G)\geq\Delta(G)+2$, known as the Goldberg-Seymour conjecture. In this talk we will discuss this conjecture and some related open problems. This is joint work with Guantao Chen and Wenan Zang.

### Constructions in combinatorics via neural networks

Series
Graph Theory Seminar
Time
Tuesday, November 30, 2021 - 12:00 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker

Please Note: Note the unusual time!

Recently, significant progress has been made in the area of machine learning algorithms, and they have quickly become some of the most exciting tools in a scientist’s toolbox. In particular, recent advances in the field of reinforcement learning have led computers to reach superhuman level play in Atari games and Go, purely through self-play. In this talk I will give a basic introduction to neural networks and reinforcement learning algorithms. I will also indicate how these methods can be adapted to the "game" of trying to find a counterexample to a mathematical conjecture, and show some examples where this approach was successful.

### Strong 4-colourings of graphs

Series
Graph Theory Seminar
Time
Tuesday, November 23, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Jessica McDonaldAuburn University

In this talk we’ll discuss strong 4-colourings of graphs and prove two new cases of the Strong Colouring Conjecture. Let H be a graph with maximum degree at most 2, and let G be obtained from H by gluing in vertex-disjoint copies of K_4. We’ll show that if H contains at most one odd cycle of length exceeding 3, or if H contains at most 3 triangles, then G is 4-colourable. This is joint work with Greg Puleo.

### Irregular $\mathbf{d_n}$-Process is distinguishable from Uniform Random $\mathbf{d_n}$-graph

Series
Graph Theory Seminar
Time
Tuesday, November 16, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Erlang SuryaGeorgia Institute of Technology

For a graphic degree sequence $\mathbf{d_n}= (d_1 , . . . , d_n)$ of graphs with vertices $v_1 , . . . , v_n$, $\mathbf{d_n}$-process is the random graph process that inserts one edge at a time at random with the restriction that the degree of $v_i$ is at most $d_i$ . In 1999, N. Wormald asked whether the final graph of random $\mathbf{d_n}$-process is "similar" to the uniform random graph with degree sequence $\mathbf{d_n}$ when $\mathbf{d_n}=(d,\dots, d)$. We answer this question for the $\mathbf{d_n}$-process when the degree sequence $\mathbf{d_n}$ that is not close to being regular. We used the method of switching for stochastic processes; this allows us to track the edge statistics of the $\mathbf{d_n}$-process. Joint work with Mike Molloy and Lutz Warnke.

### Counting paths, cycles, and other subgraphs in planar graphs

Series
Graph Theory Seminar
Time
Tuesday, November 9, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ryan MartinIowa State University

For a planar graph $H$, let ${\bf N}_{\mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. The case where $H$ is the path on $3$ vertices, $H=P_3$, was established by Alon and Caro. The case of $H=P_4$ was determined, also exactly, by Gy\H{o}ri, Paulos, Salia, Tompkins, and Zamora. In this talk, we will give the asymptotic values for $H$ equal to $P_5$ and $P_7$ as well as the cycles $C_6$, $C_8$, $C_{10}$ and $C_{12}$ and discuss the general approach which can be used to compute the asymptotic value for many other graphs $H$. This is joint work with Debarun Ghosh, Ervin Győri, Addisu Paulos, Nika Salia, Chuanqi Xiao, and Oscar Zamora and also joint work with Chris Cox.

### Line transversals in families of connected sets in the plane

Series
Graph Theory Seminar
Time
Tuesday, November 2, 2021 - 15:45 for 1 hour (actually 50 minutes)
Location
ONLINE
Speaker
Shira ZerbibIowa State University

We prove that if a family of compact connected sets in the plane has the property that every three members of it are intersected by a line, then there are three lines intersecting all the sets in the family. This answers a question of Eckhoff from 1993, who proved that under the same condition there are four lines intersecting all the sets. We also prove a colorful version of this result under weakened conditions on the sets, improving results of Holmsen from 2013. Our proofs use the topological KKM theorem. Joint with Daniel McGinnis.