Seminars and Colloquia by Series

Workshop on Dynamical Systems

Series
GT-MAP Seminar
Time
Thursday, August 10, 2017 - 10:54 for 8 hours (full day)
Location
Klaus 1447
Speaker
Various SpeakersFrom various places
GT MAP sponsored "Workshop on Dynamical Systems" to mark the retirement of Prof. Shui Nee Chow. Full day August 10- 11. After nearly 30 years at Georgia Tech, Prof. Shui Nee Chow has officially retired. This workshop will see several of his former students, post-docs, and friends, coming together to thank Shui Nee for his vision, service, and research, that so greatly impacted the School of Mathematics at Georgia Tech. The workshop will be held in the Klaus building Room 1447. More information at http://gtmap.gatech.edu/events/workshop-dynamical-system

Working Group for Problems in Transport and Related Topics in Graphs

Series
GT-MAP Seminar
Time
Tuesday, May 9, 2017 - 10:00 for 8 hours (full day)
Location
Skiles 006
Speaker
Speaker list and schedule can be found at http://www.math.gatech.edu/hg/item/589661Organizers: Shui-Nee Chow, Wilfrid Gangbo, Prasad Tetali, and Haomin Zhou

Please Note: This workshop is sponsored by College of Science, School of Mathematics, GT-MAP and NSF.

The goal of this workshop is to bring together experts in various aspects of optimal transport and related topics on graphs (e.g., PDE/Numerics, Computational and Analytic/Probabilistic aspects).

Modeling and Control of Robotic Snakes

Series
GT-MAP Seminar
Time
Friday, April 14, 2017 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alexander H. ChangGT ECE
Robotic snakes have the potential to navigate areas or environments that would be more challenging for traditionally engineered robots. To realize their potential requires deriving feedback control and path planning algorithms applicable to the diverse gait modalities possible. In turn, this requires equations of motion for snake movement that generalize across the gait types and their interaction dynamics. This talk will discuss efforts towards both obtaining general control equations for snake robots, and controlling them along planned trajectories. We model three-dimensional time- and spatially-varying locomotion gaits, utilized by snake-like robots, as planar continuous body curves. In so doing, quantities relevant to computing system dynamics are expressed conveniently and geometrically with respect to the planar body, thereby facilitating derivation of governing equations of motion. Simulations using the derived dynamics characterize the averaged, steady-behavior as a function of the gait parameters. These then inform an optimal trajectory planner tasked to generate viable paths through obstacle-strewn terrain. Discrete-time feedback control successfully guides the snake-like robot along the planned paths.

Revisiting Averaging Theory for Control of Biologically Inspired Robots

Series
GT-MAP Seminar
Time
Friday, April 14, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Patricio A. VelaGT ECE
Robotic locomotive mechanisms designed to mimic those of their biological counterparts differ from traditionally engineered systems. Though both require overcoming non-holonomic properties of the interaction dynamics, the nature of their non-holonomy differs. Traditionally engineered systems have more direct actuation, in the sense that control signals directly lead to generated forces or torques, as in the case of rotors, wheels, motors, jets/ducted fans, etc. In contrast, the body/environment interactions that animals exploit induce forces or torque that may not always align with their intended direction vector.Through periodic shape change animals are able to effect an overall force or torque in the desired direction. Deriving control equations for this class of robotic systems requires modelling the periodic interaction forces, then applying averaging theory to arrive at autonomous nonlinear control models whose form and structure resembles that of traditionally engineered systems. Once obtained, classical nonlinear control methods may be applied, though some attention is required since the control can no longer apply at arbitrary time scales.The talk will cover the fundamentals of averaging theory and efforts to identify a generalized averaging strategy capable of recovering the desired control equations. Importantly, the strategy reverses the typical approach to averaged expansions, which significantly simplifies the procedure. Doing so provides insights into feedback control strategies available for systems controlled through time-periodic signals.

Dynamics of Next-Generation Smart- and Meta-Structures

Series
GT-MAP Seminar
Time
Friday, February 17, 2017 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Alper Erturk GT Mechanical Engineering
The first part of this talk will review our recent efforts on the electroelastodynamics of smart structures for various applications ranging from nonlinear energy harvesting, bio-inspired actuation, and acoustic power transfer to elastic wave guiding and vibration attenuation via metamaterials. We will discuss how to exploit nonlinear dynamic phenomena for frequency bandwidth enhancement to outperform narrowband linear-resonant devices in applications such as vibration energy harvesting for wireless electronic components. We will also cover inherent nonlinearities (material and internal/external dissipative), and their interactions with intentionally designed nonlinearities, as well as electrical circuit nonlinearities. Electromechanical modeling efforts will be presented, and approximate analysis results using the method of harmonic balance will be compared with experimental measurements. Our recent efforts on phononic crystal-enhanced elastic wave guiding and harvesting, wideband vibration attenuation via locally resonant metamaterials, contactless acoustic power transfer, bifurcation suppression using nonlinear circuits, and exploiting size effects via strain-gradient induced polarization (flexoelectricity) in centrosymmetric elastic dielectrics will be summarized. The second part of the talk, which will be given by Chris Sugino (Research Assistant and PhD Student), will be centered on low-frequency vibration attenuation in finite structures by means of locally resonant elastic and electroelastic metamaterials. Locally resonant metamaterials are characterized by bandgaps at wavelengths that are much larger than the lattice size, enabling low-frequency vibration/sound attenuation. Typically, bandgap analyses and predictions rely on the assumption of waves traveling in an infinite medium, and do not take advantage of modal representations commonly used for the analysis of the dynamic behavior of finite structures. We will present a novel argument for estimating the locally resonant bandgap in metamaterial-based finite structures (i.e. meta-structures with prescribed boundary conditions) using modal analysis, yielding a simple closed-form expression for the bandgap frequency and size. A method for understanding the importance of the resonator locations and mass distribution will be discussed in the context of a Riemann sum approximation of an integral. Numerical and experimental results will be presented regarding the effects of mass ratio, non-uniform spacing of resonators, and parameter variations among the resonators. Electromechanical counterpart of the problem will also be summarized for piezoelectric structures.

Modeling and Control of hybrid systems and systems with delay, with applications from population dynamics to post-Newtonian gravitation.

Series
GT-MAP Seminar
Time
Friday, January 27, 2017 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Erik VerriestGT ECE
This talk contains two parts. First I will discuss our work related to causal modeling in hybrid systems. The idea is to model jump conditions as caused by impulsive inputs. While this is well defined for linear systems, the notion of impulsive inputs poses problems in the nonlinear case. We demonstrate a viable approach based on nonstandard analysis. The second part deals with dynamical systems with delays. First I will show an application of the maximum principle to a delayed resource allocation problem in population dynamics solving a problem in the model of a bee colony cycle. Next I discuss some problems regarding causality in systems with varying delays. These problems relate to the well-posedness (existence and uniqueness) and causality of the mathematical models for physical phenomena, and illustrate why one should consider the physics first and then the mathematics. Finally, I consider the post Newtonian problem as a problem with state dependent delay. Einstein’s field equations relate space time geometry to matter and energy distribution. These tensorial equations are so unwieldy that solutions are only known in some very specific cases. A semi-relativistic approximation is desirable: One where space-time may still be considered as flat, but where Newton’s equations (where gravity acts instantaneously) are replaced by a post-Newtonian theory, involving propagation of gravity at the speed of light. As this retardation depends on the geometry of the point masses, a dynamical system with state dependent delay results, where delay and state are implicitly related. We investigate several problems with the Lagrange-Bürman inversion technique and perturbation expansions. Interesting phenomena (entrainment, dynamic friction, fission and orbital speeds) not explainable by the Newtonian theory emerge. Further details on aspects of impulsive systems and delay systems will be elaborated on by Nak-seung (Patrick) Hyun and Aftab Ahmed respectively.

Multiscale Crystal Plasticity Modeling for Metals

Series
GT-MAP Seminar
Time
Friday, December 2, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. David McDowell and Shouzhi XuGT ME and MSE

Please Note: Talk by Shuozhi Xu, Title: Algorithms and Implementation for the Concurrent Atomistic-Continuum Method. Abstract: Unlikemany other multiscale methods, the concurrent atomistic-continuum (CAC) method admits the migration of dislocations and intrinsic stacking faults through a lattice while employing an underlying interatomic potential as the only constitutive relation. Here, we build algorithms and develop a new CAC code which runs in parallel using MPI with a domain decomposition algorithm. New features of the code include, but are not limited to: (i) both dynamic and quasistatic CAC simulations are available, (ii) mesh refinement schemes for both dynamic fracture and curved dislocation migration are implemented, and (iii) integration points in individual finite elements are shared among multiple processors to minimize the amount of data communication. The CAC program is then employed to study a series of metal plasticity problems in which both dislocation core effects at the nanoscale and the long range stress field of dislocations at the submicron scales are preserved. Applications using the new code include dislocation multiplication from Frank-Read sources, dislocation/void interactions, and dislocation/grain boundary interactions.

Crystal plasticity modeling is useful for considering the influence of anisotropy of elastic and plastic deformation on local and global responses in crystals and polycrystals. Modern crystal plasticity has numerous manifestations, including bottom-up models based on adaptive quasi-continuum and concurrent atomistic-continuum methods in addition to discrete dislocation dynamics and continuum crystal plasticity. Some key gaps in mesoscale crystal plasticity models will be discussed, including interface slip transfer, grain subdivision in large deformation, shock wave propagation in heterogeneous polycrystals, and dislocation dynamics with explicit treatment of waves. Given the mesoscopic character of these phenomena, contrasts are drawn between bottom-up (e.g., atomistic and discrete dislocation simulations and in situ experimental observations) and top-down (e.g., experimental) information in assembling mesoscale constitutive relations and informing their parameters.

Math Graduate Student Information Session

Series
GT-MAP Seminar
Time
Friday, November 18, 2016 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Luca Dieci and Sung Ha KangGT Math
This is an information session about research opportunities related to GT MAP activities. If you are a math graduate student, please join for free pizza as well.

Mechanical response of three-dimensional tensegrity lattices

Series
GT-MAP Seminar
Time
Friday, October 21, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Julian RimoliGT AE
Most available techniques for the design of tensegrity structures can be grouped in two categories. On the one hand, methods that rely on the systematic application of topological and geometric rules to regular polyhedrons have been applied to the generation of tensegrity elementary cells. On the other hand, efforts have been made to either combine elementary cells or apply rules of self-similarity in order to generate complex structures of engineering interest, for example, columns, beams and plates. However, perhaps due to the lack of adequate symmetries on traditional tensegrity elementary cells, the design of three-dimensional tensegrity lattices has remained an elusive goal. In this work, we first develop a method to construct three-dimensional tensegrity lattices from truncated octahedron elementary cells. The required space-tiling translational symmetry is achieved by performing recursive reflection operations on the elementary cells. We then analyze the mechanical response of the resulting lattices in the fully nonlinear regime via two distinctive approaches: we first adopt a discrete reduced-order model that explicitly accounts for the deformation of individual tensegrity members, and we then utilize this model as the basis for the development of a continuum approximation for the tensegrity lattices. Using this homogenization method, we study tensegrity lattices under a wide range of loading conditions and prestressed configurations. We present Ashby charts for yield strength to density ratio to illustrate how our tensegrity lattices can potentially achieve superior performance when compared to other lattices available in the literature. Finally, using the discrete model, we analyze wave propagation on a finite tensegrity lattice impacting a rigid wall.

Topology Optimization of Structures and Materials

Series
GT-MAP Seminar
Time
Friday, September 30, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 257
Speaker
Tomas ZegardGT CE

Please Note: Bio: Tomas Zegard is a postdoctoral fellow in the School of Civil and Environmental Engineering at Georgia Tech. He received a PhD in Structural Engineering from the University of Illinois at Urbana-Champaign in 2014. Afterwards, he took a position at SOM LLP in Chicago, an Architecture + Engineering firm specializing in skyscrapers. He has made significant contributions to the field of topology optimization through research papers and free open-source tools. Xiaojia Zhang is a doctoral candidate in the School of Civil and Environmental Engineering at Georgia Tech. She received her bachelor’s and master’s degrees in structural engineering from the University of Illinois at Urbana-Champaign. Her major research interests are structural topology optimization with material and geometric nonlinearity, stochastic programming, and additive manufacturing.

Topology optimization, an agnostic design method, proposes new and innovative solutions to structural problems. The previously established methodology of sizing a defined geometry and connectivity is not sufficient; in these lie the potential for big improvements. However, topology optimization is not without its problems, some of which can be controlled or mitigated. The seminar will introduce two topology optimization techniques: one targeted at continuum, and one targeted at discrete (lattice-like) solutions. Both will be presented using state-of-the-art formulations and implementations. The stress singularity problem (vanishing constraints), the ill-posedness of the problem, the large number of variables involved, and others, continue to challenge researchers and practitioners. The presented concepts find potential applications in super-tall building designs, aircrafts, and the human body. The issue of multiple load cases in a structure, a deterministic problem, will be addressed using probabilistic methodologies. The proposed solution is built around a suitable damping scheme based on simulated annealing. A randomized approach with stochastic sampling is proposed, which requires a fraction of the computational cost compared to the standard methodologies.

Pages