Seminars and Colloquia by Series

GT MAP Workshop on Materials

Series
GT-MAP Seminar
Time
Wednesday, August 17, 2016 - 09:30 for 8 hours (full day)
Location
Skiles 249
Speaker
Various speakersGeorgia Tech
The workshop will launch the themetic semester on Material for GT-MAP activities. This is a three day workshop: The first two days (Wed, Thurs) focusing on the theme of Material, and third day includes broad research topics, open to introducing your research. See the complete Schedule.

Multiscale and Multiphysics Modeling of Materials

Series
GT-MAP Seminar
Time
Friday, April 22, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Ting ZhuMechanical Engineering, Georgia Tech
Multiscale and multiphysics materials modeling addresses the challenging materials problems that involve multiple physical phenomena at multiple spatial and temporal scales. In this talk, I will present the multiscale and mulphysics models developed in my research group with a recent focus on energy storage materials and advanced structure materials. Our study of rechargeable lithium ion batteries for energy storage applications reveals a rich spectrum of electrochemically-induced mechanical degradation phenomena. The work involves a tight coupling between multiscale chemomechanical modeling and in situ nanobattery testing. Our study of nanostructured metals and alloys elucidates the effects of nanostructures on the size-dependent ultrahigh strengths and surface/interface mediated deformation mechanisms. Finally, I will present my perspectives on the multiscale and multiphysics modeling that requires a synergistic integration of engineering physics and applied mathematics, in order to design the advanced structural and functional materials to realize their potential to the full.

Time-Reversal and Reciprocity Breaking in Electromechanical Metamaterials and Structural Lattics

Series
GT-MAP Seminar
Time
Friday, April 15, 2016 - 15:00 for 2 hours
Location
Skiles 006
Speaker
Prof. Massimo RuzzeneAerospace Engineering and Mechanical Engineering, Georgia Tech
Recent breakthroughs in condensed matter physics are opening new directions in band engineering and wave manipulation. Specifically, challenging the notions of reciprocity, time-reversal symmetry and sensitivity to defects in wave propagation may disrupt ways in which mechanical and acoustic metamaterials are designed and employed, and may enable totally new functionalities. Non-reciprocity and topologically protected wave propagation will have profound implications on how stimuli and information are transmitted within materials, or how energy can be guided and steered so that its effects may be controlled or mitigated. The seminar will briefly introduce the state-of-the-art in this emerging field, and will present initial investigations on concepts exploiting electro-mechanical coupling and chiral and non-local interactions in mechanical lattices. Shunted piezo-electric patches are exploited to achieve time-modulated mechanical properties which lead to one-directional wave propagation in one-dimensional mechanical waveguides. A framework to realize helical edge states in two identical lattices with interlayer coupling is also presented. The methodology systematically leads to mechanical lattices that exhibit one-way, edge-bound, defect-immune, non-reciprocal wave motion. The presented concepts find potential application in vibration reduction, noise control or stress wave mitigation systems, and as part of surface acoustic wave devices capable of isolator, gyrator and circulator-like functions on compact acoustic platforms.

Talk CANCELED

Series
GT-MAP Seminar
Time
Friday, March 11, 2016 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Glaucio H. Paulino GT CE
This talk is CANCELED. Paulino's group's (http://paulino.ce.gatech.edu/) contributions in the area of computational mechanics spans development of methodologies to characterize deformation and fracture behavior of existing and emerging materials and structural systems, topology optimization for large-scale and multiscale/multiphysics problems, and origami.

Pages