- You are here:
- GT Home
- Home
- News & Events

Series: PDE Seminar

Image segmentation has been widely studied, specially since Mumford-Shah functional was been proposed. Many theoretical works as well as numerous extensions have been studied rough out the years. In this talk, I will focus on couple of variational models for multi-phase segmentation. For the first model, we propose a model built upon the phase transition model of Modica and Mortola in material sciences and a properly synchronized fitting term that complements it. For the second model, we propose a variational functional for an unsupervised multiphase segmentation, by adding scale information of each phase. This model is able to deal with the instability issue associated with choosing the number of phases for multiphase segmentation.

Series: PDE Seminar

Living systems are subject to constant evolution through the two processes of mutations and selection, a principle discovered by Darwin. In a very simple, general, and idealized description, their environment can be considered as a nutrient shared by all the population. This allows certain individuals, characterized by a 'phenotypical trait', to expand faster because they are better adapted to the environment. This leads to select the 'best fitted trait' in the population (singular point of the system). On the other hand, the new-born population undergoes small variance on the trait under the effect of genetic mutations. In these circumstances, is it possible to describe the dynamical evolution of the current trait?
We will give a mathematical model of such dynamics, based on parabolic equations, and show that an asymptotic method allows us to formalize precisely the concepts of monomorphic or polymorphic population. Then, we can describe the evolution of the 'best fitted trait' and eventually compute various forms of branching points, which represent the cohabitation of two different populations.
The concepts are based on the asymptotic analysis of the above mentioned parabolic equations, one appropriately rescaled. This leads to concentrations of the solutions and the difficulty is to evaluate the weight and position of the moving Dirac masses that describe the population. We will show that a new type of Hamilton-Jacobi equation, with constraints, naturally describes this asymptotic. Some additional theoretical questions as uniqueness for the limiting H.-J. equation will also be addressed.
This work is based on collaborations with O. Diekmann, P.-E. Jabin, S. Mischler, S. Cuadrado, J. Carrillo, S. Genieys, M. Gauduchon and G. Barles.

Series: PDE Seminar

We calculate numerically the solutions of the stationary Navier-Stokes equations in two dimensions, for a square domain with particular choices of boundary data. The data are chosen to test whether bounded disturbances on the boundary can be expected to spread into the interior of the domain. The results indicate that such behavior indeed can occur, but suggest an estimate of general form for the magnitudes of the solution and of its derivatives, analogous to classical bounds for harmonic functions. The qualitative behavior of the solutions we found displayed some striking and unexpected features. As a corollary of the study, we obtain two new examples of non-uniqueness for stationary solutions at large Reynolds numbers.

Series: PDE Seminar

The usual boundary condition adjoined to a second order elliptic equation is the Dirichlet problem, which prescribes the values of the solution on the boundary. In many applications, this is not the natural boundary condition. Instead, the value of some directional derivative is given at each point of the boundary. Such problems are usually considered a minor variation of the Dirichlet condition, but this talk will show that this problem has a life of its own. For example, if the direction changes continuously, then it is possible for the solution to be continuously differentiable up to a merely Lipschitz boundary. In addition, it's possible to get smooth solutions when the direction changes discontinuously as well.

Series: PDE Seminar

In this talk we will consider three different numerical methods for solving nonlinear PDEs:

- A class of Godunov-type second order schemes for nonlinear conservation laws, starting from the Nessyahu-Tadmor scheme;
- A class of L1 -based minimization methods for solving linear transport equations and stationary Hamilton- Jacobi equations;
- Entropy-viscosity methods for nonlinear conservation laws.

All of the above methods are based on high-order approximations of the corresponding nonlinear PDE and respect a weak form of an entropy condition. Theoretical results and numerical examples for the performance of each of the three methods will be presented.

Series: PDE Seminar

We consider a system of hyperbolic-parabolic equations describing the material instability mechanism associated to the formation of shear bands at high strain-rate plastic deformations of metals. Systematic numerical runs are performed that shed light on the behavior of this system on various parameter regimes. We consider then the case of adiabatic shearing and derive a quantitative criterion for the onset of instability: Using ideas from the theory of relaxation systems we derive equations that describe the effective behavior of the system. The effective equation turns out to be a forward-backward parabolic equation regularized by fourth order term (joint work with Th. Katsaounis and Th. Baxevanis, Univ. of Crete).

Series: PDE Seminar

We consider the existence of periodic solutions to the Euler equations of gas dynamics. Such solutions have long been thought not to exist due to shock formation, and this is confirmed by the celebrated Glimm-Lax decay theory for 2x2 systems. However, in the full 3x3 system, multiple interaction effects can combine to slow down and prevent shock formation. In this talk I shall describe the physical mechanism supporting periodicity, describe combinatorics of simple wave interactions, and develop periodic solutions to a "linearized" problem. These linearized solutions have a beautiful structure and exhibit several surprising and fascinating phenomena. I shall also discuss partial progress on the perturbation problem: this leads us to problems of small divisors and KAM theory. This is joint work with Blake Temple.

Series: PDE Seminar

We discuss the inverse problem of determining elastic parameters in the interior of an anisotropic elastic media from dynamic measurements made at the surface. This problem has applications in medical imaging and seismology. The boundary data is modeled by the Dirichlet-to-Neumann map, which gives the correspondence between surface displacements and surface tractions. We first show that, without a priori information on the anisotropy type, uniqueness can hold only up to change of coordinates fixing the boundary. In particular, we study orbits of elasticity tensors under diffeomorphisms. Then, we obtain partial uniqueness for special classes of transversely isotropic media. This is joint work with L. Rachele (RPI).

Series: PDE Seminar

I will discuss a few ways in which reaction diffusion models have been used to pattern formation. In particular in the setting of Cdc42 transport to and from the membrane in a yeast cell I will show a simple model which achieves polarization. The model and its analysis exhibits some striking differences between deterministic and probabilistic versions of the model.

Series: PDE Seminar

We describe how several nonlinear PDEs and evolutions including stationary and dynamic Navier-Stokes equations can be formulated and resolved variationally by minimizing energy functionalsof the form
I(u) = L(u, -\Lambda u) + \langle \Lambda u, u\rangle
and
I(u) = \Int^T_0 [L(t, u(t), -\dot u(t) - \Lambda u(t)) + \langle\Lambda u(t), u(t)\rangle]dt + \ell (u(0) - u(T)
\frac{u(T) + u(0)}{2}
where L is a time-dependent "selfdual Lagrangian" on state space, is another selfdual "boundary Lagrangian", and is a nonlinear operator (such as \Lambda u = div(u \otimes u) in the Navier-Stokes case). However, just like the selfdual Yang-Mills equations, the equations are not obtained via Euler-Lagrange theory, but from the fact that a natural infimum is attained. In dimension 2, we recover the well known solutions for the corresponding initial-value problem as well as periodic and anti-periodic ones, while in dimension 3 we get Leray solutions for the initial-value problems, but also solutions satisfying u(0) = \alpha u(T ) for any given in (-1, 1). It is worth noting that our variational principles translate into Leray's energy identity in dimension 2 (resp., inequality in dimension 3). Our approach is quite general and does apply to many other situations.