Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed. Crosslisted with ISYE 6759.
Introduction to the implementation and analysis of numerical algorithms for the numerical solution of the classic partial differential equations of science and engineering.
Applied mathematics techniques to solve real-world problems. Topics include mathematical modeling, asymptotic analysis, differential equations and scientific computation. Prepares the student for MATH 6515. (1st of two courses)
Geometry, convergence, and structure of linear operators in infinite dimensional spaces. Applications to science and engineering, including integral equations and ordinary and partial differential equations.
The three course series MATH 6579, 6580, and 6221 is designed to provide a high level mathematical background for engineers and scientists.
This course is equivalent to MATH 6338. Students should not be able to obtain credit for both MATH 6580 and MATH 6338.
Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.
Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.
An introduction to multivariable calculus through vectors in 3D, curves, functions of several variables, partial derivatives, min/max problems, multiple integration. Vector Calculus not covered.