This course develops in the theme of "Arithmetic congruence, and abstract algebraic structures." There will be a very strong emphasis on theory and proofs.
This course is a problem oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.
MATH 3215, MATH 3235, and MATH 3670 are mutually exclusive; students may not hold credit for more than one of these courses.
Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs.
Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.
Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.
An introduction to multivariable calculus through vectors in 3D, curves, functions of several variables, partial derivatives, min/max problems, multiple integration. Vector Calculus not covered.