Complex integration, including Goursat's theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard's theorem.
This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. (2nd of two courses)
Multivariate normal distribution theory, correlation and dependence analysis, regression and prediction, dimension-reduction methods, sampling distributions and related inference problems, selected applications in classification theory, multivariate process control, and pattern recognition.
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.
Functions, the derivative, applications of the derivative, techniques of differentiation, integration, applications of integration to probability and statistics, multidimensional calculus.
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.
Linear approximation and Taylor’s theorems, Lagrange multiples and constrained optimization, multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.