Fundamentals of statistical inference are presented and developed for models used in the modern analysis of financial data. Techniques are motivated by examples and developed in the context of applications. Crosslisted with ISYE 6783.
The fundamental group, covering spaces, core topics in homology and cohomology theory including CW complexes, universal coefficients, and Poincare duality.
This course covers the general mathematical theory of linear stationary and evolution problems plus selected topics chosen on the instructor's interests.
Complex integration, including Goursat's theorem; classification of singularities, the argument principle, the maximum principle; Riemann Mapping theorem; analytic continuation and Riemann surfaces; range of an analytic function, including Picard's theorem.
This sequence develops the qualitative theory for systems of differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms. (2nd of two courses)
Multivariate normal distribution theory, correlation and dependence analysis, regression and prediction, dimension-reduction methods, sampling distributions and related inference problems, selected applications in classification theory, multivariate process control, and pattern recognition.
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.